首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  2020年   1篇
  2019年   2篇
  2016年   1篇
  2013年   1篇
  1993年   1篇
  1985年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
《Current biology : CB》2020,30(3):551-555.e3

Media player

2.
Hyperspectral imaging (HSI) is a technology with high potential in the field of non‐invasive detection of cancer. However, in complex imaging situations like HSI of the larynx with a rigid endoscope, various image interferences can disable a proper classification of cancerous tissue. We identified three main problems: i) misregistration of single images in a HS cube due to patient heartbeat ii) image noise and iii) specular reflections (SR). Consequently, an image pre‐processor is developed in the current paper to overcome these image interferences. It encompasses i) image registration ii) noise removal by minimum noise fraction (MNF) transformation and iii) a novel SR detection method. The results reveal that the pre‐processor improves classification performance, while the newly developed SR detection method outperforms global thresholding technique hitherto used by 46%. The novel pre‐processor will be used for future studies towards the development of an operational scheme for HS‐based larynx cancer detection.

RGB image of the larynx derived from the hyperspectral cube and corresponding specular reflections ( a ) manually segmented and ( b ) detected by a novel specular reflection detection method.  相似文献   

3.
Light interacts with an organism''s integument on a variety of spatial scales. For example in an iridescent bird: nano-scale structures produce color; the milli-scale structure of barbs and barbules largely determines the directional pattern of reflected light; and through the macro-scale spatial structure of overlapping, curved feathers, these directional effects create the visual texture. Milli-scale and macro-scale effects determine where on the organism''s body, and from what viewpoints and under what illumination, the iridescent colors are seen. Thus, the highly directional flash of brilliant color from the iridescent throat of a hummingbird is inadequately explained by its nano-scale structure alone and questions remain. From a given observation point, which milli-scale elements of the feather are oriented to reflect strongly? Do some species produce broader "windows" for observation of iridescence than others? These and similar questions may be asked about any organisms that have evolved a particular surface appearance for signaling, camouflage, or other reasons.In order to study the directional patterns of light scattering from feathers, and their relationship to the bird''s milli-scale morphology, we developed a protocol for measuring light scattered from biological materials using many high-resolution photographs taken with varying illumination and viewing directions. Since we measure scattered light as a function of direction, we can observe the characteristic features in the directional distribution of light scattered from that particular feather, and because barbs and barbules are resolved in our images, we can clearly attribute the directional features to these different milli-scale structures. Keeping the specimen intact preserves the gross-scale scattering behavior seen in nature. The method described here presents a generalized protocol for analyzing spatially- and directionally-varying light scattering from complex biological materials at multiple structural scales.  相似文献   
4.
5.
Polarized and specular reflectance variation with leaf surface features   总被引:2,自引:0,他引:2  
The linearly polarized reflectance from a leaf depends on the characteristics of the leaf surface. In the present study the leaf reflectance of a number of plant species with varying surface characteristics was measured at the Brewster angle with a polarization photometer having 5 visible and near-infrared wavelength bands. We found that all leaf surfaces polarized incident light. Differences among species could be explained by variation in surface features. The results support our hypothesis that the polarized light is reflected by the leaf surface, not by its interior. Two mechanisms appeared responsible for the linearly polarized reflectance: (1) specular reflectance and (2) surface particle scattering. In most cases, large values of linearly polarized reflectance could be attributed to specular reflectance from the leaf surface. Attribution required knowledge of the optical dimensions of features on the leaf surface.  相似文献   
6.
Soluble oligomers of prion proteins (PrP), produced during amyloid aggregation, have emerged as the primary neurotoxic species, instead of the fibrillar end-products, in transmissible spongiform encephalopathies. However, whether the membrane is among their direct targets, that mediate the downstream adverse effects, remains a question of debate. Recently, questions arise from the formation of membrane-active oligomeric species generated during the β-aggregation pathway, either in solution, or in lipid environment. In the present study, we characterized membrane interaction of off-pathway oligomers from recombinant prion protein generated along the amyloid aggregation and compared to lipid-induced intermediates produced during lipid-accelerated fibrillation. Using calcein-leakage assay, we show that the soluble prion oligomers are the most potent in producing leakage with negatively charged vesicles. Binding affinities, conformational states, mode of action of the different PrP assemblies were determined by thioflavin T binding-static light scattering experiments on DOPC/DOPS vesicles, as well as by FTIR-ATR spectroscopy and specular neutron reflectivity onto the corresponding supported lipid bilayers. Our results indicate that the off-pathway PrP oligomers interact with lipid membrane via a distinct mechanism, compared to the inserted lipid-induced intermediates. Thus, separate neurotoxic mechanisms could exist following the puzzling intermediates generated in the different cell compartments. These results not only reveal an important regulation of lipid membrane on PrP behavior but may also provide clues for designing stage-specific and prion-targeted therapy.  相似文献   
7.
Effects of 2.45-GHz microwaves on primate corneal endothelium   总被引:3,自引:0,他引:3  
Both eyes of anesthetized cynomolgus monkeys (Macaca fascicularis) were irradiated with 2.45-GHz microwaves, either pulsed or continuous wave. In vivo corneal endothelial abnormalities were observed by specular microscopy and confirmed through histologic techniques after a 16- to 48-hour postexposure period. Pulsed microwaves with an average power density of 10 mW/cm2 (equivalent to a specific absorption rate (SAR) = 2.6 W/kg) produced these effects, while levels of 20-30 mW/cm2 (equivalent to a SAR = 5.3 to 7.8 W/kg) with continuous wave irradiation were required to produce similar changes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号