首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
  1篇
  2018年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
This overview groups some of the recent studies highlighting the potential application of Raman microspectroscopy as an analytical technique in preclinical development to predict drug mechanism of action and in clinical application as a companion diagnostic and in personalised therapy due to its capacity to predict cellular resistance and therefore to optimise chemotherapeutic treatment efficacy. Notably, the anthracyclines, doxorubicin and actinomycin D, elicit similar spectroscopic signatures of subcellular interaction characteristic of the mode of action of intercalation. Although cisplatin and vincristine show markedly different signatures, at low exposure doses, their signatures at higher doses show marked similarities to those elicited by the intercalating anthracyclines, confirming that anticancer agents can have different modes of action with different spectroscopic signatures, depending on the dose. The study demonstrates that Raman microspectroscopy can elucidate subcellular transport and accumulation pathways of chemotherapeutic agents, characterise and fingerprint their mode of action, and potentially identify cell‐resistant strains. The consistency of the spectroscopic signatures for drugs of similar modes of action, in different cell lines, suggests that this fingerprint can be considered a “spectralome” of the drug‐cell interaction suggesting a new paradigm of representing spectroscopic responses.   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号