首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   0篇
  国内免费   8篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   4篇
  2010年   5篇
  2009年   3篇
  2008年   7篇
  2007年   9篇
  2006年   5篇
  2005年   8篇
  2004年   8篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   8篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
1.
This paper reviews recent developments in the use of molecular probes for analyzing the genetic makeup of somatic hybrids. Successful application of somatic hybridization to the interspecific transfer of traits encoded in the nucleus is still having limited success. A major difficulty is hybrid infertility, particularly in hybrids between sexually incompatible species. The formation of asymmetric hybrids is being explored as an approach for improving hybrid fertility. Evaluation of the degree of chromosome elimination and chromosome stability and instability in asymmetric hybrids is difficult when the traditional approaches of chromosome counting and isozyme analysis are used. Two new approaches are resolving this difficulty. The use of species-specific repetitive DNA probes in dot blotting and in situ hybridization to chromosomes is providing quantitative data on chromosome elimination and allows detection of translocations. Use of restriction fragment length polymorphism (RFLP) probes for analysis of hybrids between genetically mapped species makes it possible to account for the presence or absence of individual chromosomes and chromosomes arms. Wider use of such molecular probes should greatly improve our understanding of the genetics of both symmetric and asymmetric somatic hybrids and may lead to new strategies for the effective interspecific transfer of nucleus-encoded traits by protoplast fusion.  相似文献   
2.
Pectobacterium odoriferum is the primary causative agent in Kimchi cabbage soft-rot diseases. The pathogenic bacteria Pectobacterium genera are responsible for significant yield losses in crops. However, P. odoriferum shares a vast range of hosts with P. carotovorum, P. versatile, and P. brasiliense, and has similar biochemical, phenotypic, and genetic characteristics to these species. Therefore, it is essential to develop a P. odoriferum-specific diagnostic method for soft-rot disease because of the complicated diagnostic process and management as described above. Therefore, in this study, to select P. odoriferum-specific genes, species-specific genes were selected using the data of the P. odoriferum JK2.1 whole genome and similar bacterial species registered with NCBI. Thereafter, the specificity of the selected gene was tested through blast analysis. We identified novel species-specific genes to detect and quantify targeted P. odoriferum and designed specific primer sets targeting HAD family hydrolases. It was confirmed that the selected primer set formed a specific amplicon of 360 bp only in the DNA of P. odoriferum using 29 Pectobacterium species and related species. Furthermore, the population density of P. odoriferum can be estimated without genomic DNA extraction through SYBR Green-based real-time quantitative PCR using a primer set in plants. As a result, the newly developed diagnostic method enables rapid and accurate diagnosis and continuous monitoring of soft-rot disease in Kimchi cabbage without additional procedures from the plant tissue.  相似文献   
3.
临床常见镰刀菌的鉴别   总被引:2,自引:0,他引:2  
目的从分子生物学角度寻找一种快速准确鉴定临床常见镰刀菌的方法。方法将受试镰刀菌接种于PDA培养基,观察其菌落及镜下形态,在此基础上PCR扩增受试镰刀菌的rDNA ITS并测其序列,在GenBank核酸序列数据库进行同源序列搜索及分析。选择限制性内切酶Dra Ⅱ和Cfr13 Ⅰ进行RFLP。设计了茄病镰刀菌的种特异性引物Sol1、Sol2,初步验证其特异性。结果形态学鉴定结果显示,茄病镰刀菌所占比例最高,除2株串珠镰刀菌外,其余镰刀菌ITS序列分析的结果与形态学鉴定结果一致。茄病、层生和串珠镰刀菌的Dra Ⅱ、Cfr13 I酶切带形互不相同。用Sol1、Sol2扩增受试菌的rDNA ITS,只有茄病镰刀菌为阳性。结论rDNA ITS序列测定及其PCR-RFLP可用于初步鉴别几种临床常见镰刀菌,合适的种特异性引物可以初步快速鉴定茄病镰刀菌。  相似文献   
4.
CO1在侧耳属物种快速鉴定中的应用   总被引:1,自引:0,他引:1  
以侧耳属Pleurotus15个种的15个菌株为材料,根据GenBank上侧耳属细胞色素c氧化酶亚基Ⅰ基因(cytochrome c oxidase subunit 1 gene,CO1)序列信息,设计引物CO332F、CO332R,进行第一轮PCR扩增,结果显示所有菌株都能得到单一条带,根据条带大小,15个菌株可分为4组。随后针对每个种设计特异性引物,进行第二轮PCR扩增,结果显示每个菌株只有在自己特异的引物中出现目的条带。通过两轮扩增,根据扩增条带的大小和有无,即可对15个种进行快速鉴定。  相似文献   
5.
从簇毛麦(Haynaldia villosa (L.) Schur.)组合CA9211/RW15(6D/6V异代换系)幼胚培养SC2后代中,用原位杂交方法鉴定出T240-6为6VS端体异代换系. 以此为材料,采用微细玻璃针切割法及"单管反应"技术体系,对6VS进行切割分离及LA (Linker adaptor)-PCR扩增.扩增带在100~3 000 bp 之间,大部分集中在600~1 500 bp.利用32P标记的簇毛麦基因组为探针进行Southern杂交,证实扩增产物来源于簇毛麦.扩增产物纯化后,连接到pGEM-T载体上,构建了6VS DNA质粒文库.对文库的分析表明,文库大约有17 000个白色克隆;插入片段分布在100~1 500 bp,平均600 bp.点杂交结果表明,37%克隆有中度到强烈的杂交信号,证明含有中度或高度重复序列;63%克隆有较弱的信号或没有信号,证明为单/低拷贝序列克隆.从文库中获得8个簇毛麦特异克隆,对其中两个克隆pHVMK22和 pHVMK134进行了RFLP分析和序列分析,并利用该探针对小麦抗白粉病基因Pm21进行了检测.RFLP 结果表明,两个克隆一个为低拷贝序列克隆(pHVMK22),另一个为高度重复序列克隆,均为簇毛麦专化DNA序列.以pHVMK22为探针对抗、感病小麦(Triticum aestivum L.)品系的Southern杂交发现抗病品系有一条2 kb的特征带, 该探针可能作为检测抗病基因Pm21的探针.  相似文献   
6.
We describe a simple protocol for identifying and quantifying the two components in binary mixtures of species possessing one or more similar proteins. Central to the method is the identification of ''corresponding proteins'' in the species of interest, in other words proteins that are nominally the same but possess species-specific sequence differences. When subject to proteolysis, corresponding proteins will give rise to some peptides which are likewise similar but with species-specific variants. These are ''corresponding peptides''. Species-specific peptides can be used as markers for species determination, while pairs of corresponding peptides permit relative quantitation of two species in a mixture. The peptides are detected using multiple reaction monitoring (MRM) mass spectrometry, a highly specific technique that enables peptide-based species determination even in complex systems. In addition, the ratio of MRM peak areas deriving from corresponding peptides supports relative quantitation. Since corresponding proteins and peptides will, in the main, behave similarly in both processing and in experimental extraction and sample preparation, the relative quantitation should remain comparatively robust. In addition, this approach does not need the standards and calibrations required by absolute quantitation methods. The protocol is described in the context of red meats, which have convenient corresponding proteins in the form of their respective myoglobins. This application is relevant to food fraud detection: the method can detect 1% weight for weight of horse meat in beef. The corresponding protein, corresponding peptide (CPCP) relative quantitation using MRM peak area ratios gives good estimates of the weight for weight composition of a horse plus beef mixture.  相似文献   
7.
X3, a monoclonal antibody of unusual specificity, is described. This antibody reacts with one or more cytokeratin polypeptides and also reacts with an avian (chicken, quail) nuclear antigen that appears to be present in all cell types (chicken) tested, although with variable staining pattern and intensity. This antigen is distinct from the cytokeratins but does have an epitope in common with this class of proteins. It disappears from the nucleus during the early stages of cell division and reappears during anaphase as a granular cytoplasmic structure. In late telophase the antigen is relocated in the nucleus. This antigen, which we have designated as avian-specific nuclear antigen (AVNA), is not associated with chromatin or ribonucleoproteins. From immunoblotting experiments on chicken fibroblast nuclei, AVNA is probably a complex composed of one or several polypeptides, one of which has a molecular weight of approximately 60 kD. The proteins were identified as nuclear matrix proteins rather than pore complex-lamina proteins by immunoblotting experiments on the purified nuclear matrix of chicken erythrocytes. The major polypeptide had a molecular weight of 60 kD and the minor polypeptide a molecular weight of 69 kD.  相似文献   
8.
Hybridization between sympatric species provides unique opportunities to examine the contrast between mechanisms that promote hybridization and maintain species integrity. We surveyed hybridization between sympatric coastal steelhead (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki) from two streams in Washington State, Olsen Creek (256 individuals sampled) and Jansen Creek (431 individuals sampled), over a 3-year period. We applied 11 O. mykiss-specific nuclear markers, 11 O. c. clarki-specific nuclear markers and a mitochondrial DNA marker to assess spatial partitioning among species and hybrids and determine the directionality of hybridization. F1 and post-F1 hybrids, respectively, composed an average of 1.2% and 33.6% of the population sampled in Jansen Creek, and 5.9% and 30.4% of the population sampled in Olsen Creek. A modest level of habitat partitioning among species and hybrids was detected. Mitochondrial DNA analysis indicated that all F1 hybrids (15 from Olsen Creek and five from Jansen Creek) arose from matings between steelhead females and cutthroat males implicating a sneak spawning behaviour by cutthroat males. First-generation cutthroat backcrosses contained O. c. clarki mtDNA more often than expected suggesting natural selection against F1 hybrids. More hybrids were backcrossed toward cutthroat than steelhead and our results indicate recurrent hybridization within these creeks. Age analysis demonstrated that hybrids were between 1 and 4 years old. These results suggest that within sympatric salmonid hybrid zones, exogenous processes (environmentally dependent factors) help to maintain the distinction between parental types through reduced fitness of hybrids within parental environments while divergent natural selection promotes parental types through distinct adaptive advantages of parental phenotypes.  相似文献   
9.
Genetic diversity and species-diagnostic markers of 5 oysters in Thailand, Crassostrea belcheri (Sowerby, 1871), Crassostrea iredalei (Faustino, 1932), Saccostrea cucullata (Born, 1778), Saccostrea forskali (Gmelin, 1791), and Striostrea (Parastriostrea) mytiloides (Lamarck, 1819), were investigated by randomly amplified polymorphic DNA (RAPD) analysis. In a total, 135, 127, and 108 genotypes were observed from primers OPA09, OPB01, and OPB08 (Operon Technologies Inc., kits A and B), and 131 and 122 genotypes from primers UBC210 and UBC220 (University of British Columbia), respectively. Two hundred fifty-four reproducible and polymorphic fragments (200–2500 bp in length) were generated across the 5 investigated species. The average number of bands per primer varied between 12.4 and 32.2. The percentage of polymorphic bands within Crassostrea (53.23%–77.67%) was lower than that within Saccostrea and Striostrea oysters (86.21%–99.36%). Nine, species-specific markers were found in C. belcheri, 4 in C. iredalei, and 2 in S. cucullata. The mean of a ratio between the number of genotypes generated by each primer and the number of investigated specimens of C. belcheri (0.58) was lower than that of the remaining species (0.90–1.00). Genetic distances between pairs of oyster samples were between 0.105 and 0.811. A neighbor-joining tree indicated distant relationships between Crassostrea and Saccostrea oysters, but closer relationships were observed between the latter and Striostrea mytiloides. Received June 6, 2000; accepted September 12, 2000  相似文献   
10.
Abstract Molecular genetic keys for identification of 3 commercially cultured oysters (Crassostrea belcheri, Crassostrea iredalei, and Saccostrea cucullata) in Thailand were developed based on restriction analysis of 18S ribosomal DNA and cytochrome oxidase subunit I (COI). Digestion of the amplified 18S rDNA with Hinf I unambiguously differentiated Crassostrea oysters from Saccostrea oysters and Striostrea (Parastriostrea) mytiloides. In addition, species-specific restriction fragment length polymorphism patterns of C. belcheri, C. iredalei, and S. cucullata were consistently observed when the gel-eluted COI was digested with Mbo I and Dde I. Thirty composite haplotypes were observed across all individuals. Species-specific composite haplotypes were found in C. belcheri (AAAA and AAAB), C. iredalei (AABC and AABU), and S. cucullata (BBCD and BBCE), respectively. The most common composite haplotype of COI in C. belcheri (AAAA), C. iredalei (AABC), and S. cucullata (BBCD) was amplified, cloned, and sequenced. Detection of C. belcheri and C. iredalei based on polymerase chain reaction was further developed using more specific primers (HCO2198 and R372) followed by digestion of a 372-bp product with Mbo I.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号