首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2017年   1篇
  2016年   1篇
  2013年   3篇
  2009年   1篇
  2005年   1篇
  2001年   2篇
  1998年   1篇
  1996年   1篇
  1994年   2篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
We have used docking techniques in order to propose potential inhibitors to the enzymes adenosine phosphosulfate reductase and adenosine triphosphate sulfurylase that are responsible, among other deleterious effects, for causing souring of oil and gas reservoirs. Three candidates selected through molecular docking revealed new and improved polar and hydrophobic interactions with the above-mentioned enzymes. Microbiological laboratory assays performed subsequently corroborated the results of computer modelling that the three compounds can efficiently control the biogenic sulfide production.  相似文献   
2.
Control of biogenic H(2)S production with nitrite and molybdate   总被引:2,自引:0,他引:2  
The effects of the metabolic inhibitors, sodium nitrite and ammonium molybdate, on production of H2S by a pure culture of the sulfate-reducing bacterium (SRB) Desulfovibrio sp. strain Lac6 and a consortium of SRB, enriched from produced water of a Canadian oil field, were investigated. Addition of 0.1 mM nitrite or 0.024 mM molybdate at the start of growth prevented the production of H2S by strain Lac6. With exponentially growing cultures, higher levels of inhibitors, 0.25 mM nitrite or 0.095 mM molybdate, were required to suppress the production of H2S. Simultaneous addition of nitrite and molybdate had a synergistic effect: at time 0, 0.05 mM nitrite and 0.01 mM molybdate, whereas during the exponential phase, 0.1 mM nitrite and 0.047 mM molybdate were sufficient to stop H2S production. With an exponentially growing consortium of SRB, enriched from produced water of the Coleville oil field, much higher levels of inhibitors, 4 mM nitrite or 0.47 mM molybdate, were needed to stop the production of H2S. The addition of these inhibitors had no effect on the composition of the microbial community, as shown by reverse sample genome probing. The results indicate that the efficiency of inhibitors in containment of SRB depends on the composition and metabolic state of the microbial community. Journal of Industrial Microbiology & Biotechnology (2001) 26, 350–355. Received 02 August 2000/ Accepted in revised form 17 April 2001  相似文献   
3.
Reservoir souring in offshore oil fields is caused by hydrogen sulphide (H2S) produced by sulphate-reducing bacteria (SRB), most often as a consequence of sea water injection. Biocide treatment is commonly used to inhibit SRB, but has now been replaced by nitrate treatment on several North Sea oil fields. At the Statfjord field, injection wells from one nitrate-treated reservoir and one biocide-treated reservoir were reversed (backflowed) and sampled for microbial analysis. The two reservoirs have similar properties and share the same pre-nitrate treatment history. A 16S rRNA gene-based community analysis (PCR-DGGE) combined with enrichment culture studies showed that, after 6 months of nitrate injection (0.25 mM NO3 ), heterotrophic and chemolithotrophic nitrate-reducing bacteria (NRB) formed major populations in the nitrate-treated reservoir. The NRB community was able to utilize the same substrates as the SRB community. Compared to the biocide-treated reservoir, the microbial community in the nitrate-treated reservoir was more phylogenetically diverse and able to grow on a wider range of substrates. Enrichment culture studies showed that SRB were present in both reservoirs, but the nitrate-treated reservoir had the least diverse SRB community. Isolation and characterisation of one of the dominant populations observed during nitrate treatment (strain STF-07) showed that heterotrophic denitrifying bacteria affiliated to Terasakiella probably contributed significantly to the inhibition of SRB. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
4.

Microbial souring (H2S production) in porous medium was investigated in an anaerobic upflow porous medium reactor at 60°C using produced waters obtained from the North Sea Ninian oilfield as the inoculum. Multiple carbon sources commonly found in oil field waters (formate, acetate, propionate, iso‐ and n‐butyrates) with inorganic sulfate as the electron acceptor were used as the substrates. Stoichiometry and the rate of souring in the reactor column were calculated. A large proportion of H2S was trapped in the column as FeS and possibly as a gas phase. Concentration gradients for the substrates (organic acids and sulfate) and H2S were generated along the column. At steady state, the highest volumetric substrate consumption and H2S production were found at the front part (inlet) of the reactor column. The average volumetric sulfate reduction rate after H2S production had stabilized was calculated to be 203 ± 51 mg sulfate‐S.l‐1.d‐1. Comparison of the results with the authors’ previous work on the Alaska Kuparuk oilfield waters indicates that the two different microbial inocula (produced waters) exhibited the same experimental trends (rates and location) for souring in the experimental reactor system. This indicates that abiotic factors, as well as microbial parameters, may play an important role for microbial souring in the system.  相似文献   
5.
Microbial control of biogenic production of hydrogen sulfide in oil fields was studied in a model system consisting of pure cultures of the nitrate-reducing, sulfide-oxidizing bacterium (NR-SOB) Thiomicrospira sp. strain CVO and the sulfate-reducing bacterium (SRB) Desulfovibrio sp. strain Lac6, as well as in microbial cultures enriched from produced water of a Canadian oil reservoir. The presence of nitrate at concentrations up to 20 mM had little effect on the rate of sulfate reduction by a pure culture of Lac6. Addition of CVO imposed a strong inhibition effect on production of sulfide. In the absence of added nitrate SRB we were able to overcome this effect after an extended lag phase. Simultaneous addition of CVO and nitrate stopped the production of H2S immediately. The concentration of sulfide decreased to a negligible level due to nitrate-dependent sulfide oxidation activity of CVO. This was not prevented by raising the concentration of Na-lactate, the electron donor for sulfate reduction. Similar results were obtained with enrichment cultures. Enrichments of produced water with sulfide and nitrate were dominated by CVO, whereas enrichments with sulfate and Na-lactate were dominated by SRB. Addition of an NR-SOB enrichment to an SRB enrichment inhibited the production of sulfide. Subsequent addition of sufficient nitrate caused the sulfide concentration to drop to zero. A similar response was seen in the presence of nitrate alone, although after a pronounced lag time, it was needed for emergence of a sizable CVO population. The results of the present study show that two mechanisms are involved in microbial control of biogenic sulfide production. First, addition of NR-SOB imposes an inhibition effect, possibly by increasing the environmental redox potential to levels which are inhibitory for SRB. Second, in the presence of sufficient nitrate, NR-SOB oxidize sulfide, leading to its complete removal from the environment. Successful microbial control of H2S in an oil reservoir is crucially dependent on the simultaneous presence of NR-SOB (either indigenous population or injected) and nitrate in the environment.  相似文献   
6.
Hamilton WA 《Biodegradation》1998,9(3-4):201-212
The cellular physiology of the sulphate-reducing bacteria, and of other sulphidogenic species, is determined by the energetic requirements consequent upon their respiratory mode of metabolism with sulphate and other oxyanions of sulphur as terminal electron acceptors. As a further consequence of their, relatively, restricted catabolic activities and their requirement for conditions of anaerobiosis, sulphidogenic bacteria are almost invariably found in nature as component organisms within microbial consortia. The capacity to generate significant quantities of sulphide influences the overall metabolic activity and species diversity of these consortia, and is the root cause of the environmental impact of the sulphidogenic species: corrosion, pollution and the souring of hydrocarbon reservoirs.  相似文献   
7.
An anaerobic upflow porous media biofilm reactor was designed to study the kinetics and stoichiometry of hydrogen sulfide production by the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans (ATCC 5575) as the first step for the modeling and control of formation souring (H(2)S) in oil field porous media. The reactor was a packed bed (50 x 5.5 cm) tubular reactor. Sea sand (140 to 375 mum) was used as the porous media. The initial indication of souring was the appearance of well-separated black spots (precipitates of iron sulfide) in the sand bed. The blackened zones expanded radially and upward through the column. New spots also appeared and expanded into the cone shapes. Lactate (substrate) was depleted and hydrogen sulfide appeared in the effluent.Analysis of the pseudo-steady state column shows that there were concentration gradients for lactate and hydrogen sulfide along the column. The results indicate that most of the lactate was consumed at the front part of the column. Measurements of SRB biomass on the solid phase (sand) and in the liquid phase indicate that the maximum concentration of SRB biomass resided at the front part of the column while the maximum in the liquid phase occurred further downstream. The stoichiometry regarding lactate consumption and hydrogen sulfide production observed in the porous media reactor was different from that in a chemostat. After analyzing the radial dispersion coefficient for the SRB in porous media and kinetics of microbial growth, it was deduced that transport phenomena dominate the souring process in our porous media reactor system. (c) 1994 John Wiley & Sons, Inc.  相似文献   
8.
The biogenic production of hydrogen sulfide gas by sulfate-reducing bacteria (SRB) causes serious economic problems for natural gas and oil industry. One of the key enzymes important in this biologic process is adenosine phosphosulfate reductase (APSr). Using virtual screening technique we have discovered 15 compounds that are novel potential APSr inhibitors. Three of them have been selected for molecular docking and microbiological studies which have shown good inhibition of SRB in the produced water from the oil industry.  相似文献   
9.
Microbial souring (production of hydrogen sulfide by sulfate-reducing bacteria, SRB) in crushed Berea sandstone columns with oil field-produced water consortia incubated at 60°C was inhibited by the addition of nitrate (NO3) or nitrite (NO 2 ). Added nitrate (as nitrogen) at a concentration of 0.71 mM resulted in the production of 0.57–0.71 mM nitrite by the native microbial population present during souring and suppressed sulfate reduction to below detection limits. Nitrate added at 0.36 mM did not inhibit active souring but was enough to maintain inhibition if the column had been previously treated with 0.71 mM or greater. Continuous addition of 0.71–0.86 mM nitrite also completely inhibited souring in the column. Pulses of nitrite were more effective than the same amount of nitrite added continuously. Nitrite was more effective at inhibiting souring than was glutaraldehyde, and SRB recovery was delayed longer with nitrite than with glutaraldehyde. It was hypothesized that glutaraldehyde killed SRB while nitrite provided a long-term inhibition without cell death. Removal of nitrate after as long as 3 months of continuous addition allowed SRB in a biofilm to return to their previous level of activity. Inhibition was achieved with much lower levels of nitrate and nitrite, and at higher temperatures, than noted by other researchers.  相似文献   
10.
The dynamic behaviour of adenosine triphosphate sulfurylase (ATPs) is analysed to investigate its energetic interactions with inhibitors recently studied theoretically and tested experimentally. The interactions between ATPs and three inhibitors namely, 2,2′-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), butylated hydroxytoluene (BHT), and 3-tert-butyl-4-hydroxyanisole (BHA) in aqueous solution were studied via molecular dynamics simulations. The results of the absolute and relative free energies reveal the existence of synergism in the system. Additionally, the system demonstrates strong steric effect between ABTS and BHA that is not only due to the size of these inhibitors but also their surroundings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号