首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2023年   1篇
  2018年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
Light pollution is one of the forms by which human-induced alterations are changing natural environments. Artificial light at night (ALAN) has been increasing over the past decades and it is already known that ALAN can have a major influence on the ecology, behavior, and physiology of different taxa. Nocturnal small mammals are particularly vulnerable, as ALAN can increase their predation risk while foraging. The aim of this study was to investigate foraging strategies under different light conditions in a nocturnal small insectivore, the greater white-toothed shrew (Crocidura russula). Compared with rodents, shrews have a higher metabolic rate and thus present a good model for a foraging study. In three laboratory experiments with wild-caught shrews we tested (i) food preference under dark conditions as well as the effect of different light conditions on (ii) foraging strategies and (iii) food choice. The results showed that shrews had a clear food preference under dark conditions. They also preferred to forage under dark over light conditions when presented with the same food in both conditions. However, when presented with the choice of foraging their preferred food under illuminated conditions or a lower food quality in the dark, the food preference of shrews overruled their preference for feeding in the dark. It seems that food preference, rather than risk perception, is the main driver determining the foraging strategy of the greater white-toothed shrews. This study suggests that ALAN does not necessarily prevent high-metabolic nocturnal insectivores from achieving their energetic needs, which might help explain their persistence in urban environments.  相似文献   
2.
Abstract

The developmental gene expression, morphogenesis, and population variation in mammalian molar teeth has become increasingly well understood, providing a model system for synthesizing evolution and developmental genetics. In this study, we estimated additive genetic covariances in molar shape (G) using parent-offspring regression in Cryptotis parva, the Least Shrew. We found that crown shape had an overall h2 value of 0.34 (±0.08), with higher heritabilities in molar cusps than notches. We compared the genetic covariances to phenotypic (P) and environmental (E) covariances, and to the covariances in crown features expected from the enamel knot developmental cascade (D). We found that G and D were not strongly correlated and that major axes of G (evolutionary lines of least resistance) are better predictors of evolutionary divergences in soricines than is D. We conclude that the enamel knot cascade does impose constraints on the evolution of molar shape, but that it is so permissive that the divergences among soricines (whose last common ancestor lived about 14 million years ago) do not fully explore its confines. Over tens of millions of years, G will be a better predictor of the major axes of evolution in molar shape than D.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号