首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6496篇
  免费   339篇
  国内免费   331篇
  2024年   6篇
  2023年   115篇
  2022年   149篇
  2021年   195篇
  2020年   192篇
  2019年   268篇
  2018年   181篇
  2017年   177篇
  2016年   233篇
  2015年   243篇
  2014年   355篇
  2013年   578篇
  2012年   221篇
  2011年   231篇
  2010年   197篇
  2009年   268篇
  2008年   249篇
  2007年   270篇
  2006年   294篇
  2005年   274篇
  2004年   283篇
  2003年   224篇
  2002年   178篇
  2001年   179篇
  2000年   142篇
  1999年   133篇
  1998年   124篇
  1997年   130篇
  1996年   114篇
  1995年   97篇
  1994年   106篇
  1993年   94篇
  1992年   104篇
  1991年   91篇
  1990年   59篇
  1989年   56篇
  1988年   58篇
  1987年   54篇
  1986年   27篇
  1985年   38篇
  1984年   33篇
  1983年   38篇
  1982年   29篇
  1981年   15篇
  1980年   19篇
  1979年   9篇
  1978年   12篇
  1977年   6篇
  1976年   8篇
  1975年   4篇
排序方式: 共有7166条查询结果,搜索用时 640 毫秒
1.
The fungal fruiting body or mushroom is a multicellular structure essential for sexual reproduction. It is composed of dikaryotic cells that contain one haploid nucleus from each mating partner sharing the same cytoplasm without undergoing nuclear fusion. In the mushroom, the pileus bears the hymenium, a layer of cells that includes the specialized basidia in which nuclear fusion, meiosis, and sporulation occur. Coprinopsis cinerea is a well-known model fungus used to study developmental processes associated with the formation of the fruiting body. Here we describe that knocking down the expression of Atr1 and Chk1, two kinases shown to be involved in the response to DNA damage in a number of eukaryotic organisms, dramatically impairs the ability to develop fruiting bodies in C. cinerea, as well as other developmental decisions such as sclerotia formation. These developmental defects correlated with the impairment in silenced strains to sustain an appropriated dikaryotic cell cycle. Dikaryotic cells in which chk1 or atr1 genes were silenced displayed a higher level of asynchronous mitosis and as a consequence aberrant cells carrying an unbalanced dose of nuclei. Since fruiting body initiation is dependent on the balanced mating-type regulator doses present in the dikaryon, we believe that the observed developmental defects were a consequence of the impaired cell cycle in the dikaryon. Our results suggest a connection between the DNA damage response cascade, cell cycle regulation, and developmental processes in this fungus.  相似文献   
2.
Ataxia-telangiectasia mutated (ATM) plays crucial roles in DNA damage responses, especially with regard to DNA double-strand breaks (DSBs). However, it appears that ATM can be activated not only by DSB, but also by some changes in chromatin architecture, suggesting potential ATM function in cell cycle control. Here, we found that ATM is involved in timely degradation of Cdt1, a critical replication licensing factor, during the unperturbed S phase. At least in certain cell types, degradation of p27Kip1 was also impaired by ATM inhibition. The novel ATM function for Cdt1 regulation was dependent on its kinase activity and NBS1. Indeed, we found that ATM is moderately phosphorylated at Ser1981 during the S phase. ATM silencing induced partial reduction in levels of Skp2, a component of SCFSkp2 ubiquitin ligase that controls Cdt1 degradation. Furthermore, Skp2 silencing resulted in Cdt1 stabilization like ATM inhibition. In addition, as reported previously, ATM silencing partially prevented Akt phosphorylation at Ser473, indicative of its activation, and Akt inhibition led to modest stabilization of Cdt1. Therefore, the ATM-Akt-SCFSkp2 pathway may partly contribute to the novel ATM function. Finally, ATM inhibition rendered cells hypersensitive to induction of re-replication, indicating importance for maintenance of genome stability.  相似文献   
3.
Direct somatic embryogenesis from axes of mature peanut embryos   总被引:2,自引:0,他引:2  
Summary Plant regeneration via somatic embryogenesis was obtained in peanut (Arachis hypogaea L.) from axes of mature zygotic embryos. The area of greatest embryogenic activity was a 2-mm region adjacent to and encircling the epicotyl. Somatic embryogenesis was evaluated on Murashige and Skoog media supplemented with a variety of auxin treatments. Maximum production occurred on medium supplemented with 3 mg · liter−1 4-amino-3,5,6-trichloropicolinic acid. Explant cultures were transferred to half-strength medium supplemented with 1 mg · liter−1 gibberellic acid for somatic embryo germination and early plantlet growth. Plantlets, transferred to soil, were placed in a greenhouse and grown to maturity.  相似文献   
4.
Summary This study was conducted to examine the effect of biotin and thiamine concentrations on callus growth and somatic embryogenesis of date palm (Phoenix dactylifera L.). Embryogenic callus derived from offshoot tip explants was cultured on hormone-free MS medium containing biotin at 0, 0.1, 1, or 2 mg l−1 combined with thiamine at 0.1, 0.5, 2, or 5 mg l−1. Embryogenic callus weight, number of resultant embryos, and embryo length were significantly influenced by thiamine and biotin concentration. The optimum callus growth treatment consisted of 0.5 mg l−1 thiamine and 2 mg l−1 biotin. This treatment also gave the highest number of embryos. Embryo elongation was greatest at 0.5 or 2 mg l−1 thiamine combined with 1 mg l−1 biotin. Embryos from all treatments germinated and regenerants exhibited normal growth in soil. This study provides an insight into the importance of optimizing various culture medium components to overcome in vitro recalcitrace of date palm.  相似文献   
5.
Location within a tree was analyzed as a source of variation in Sequoia sempervirens leaf monoterpenes. No differences were found for quantitative composition or total yield/dry wt among lower, middle and upper canopy positions. The awlshaped, spirally arranged leaves of vigorous upper shoots showed small quantitative compositional differences, but not differences in total yield. The intermediate leaf form of young sprouts had the most different monoterpene quantitative composition and about three times the total yield of the above two leaf forms. Analysis of a clonal ring of 17 adult trees resulted in coefficients of variation similar to those for samples collected from different canopy levels of the same shoot. Results revealed the sources and magnitudes of experimental error in comparative studies of this species' leaf monoterpenes, and did not support the concept that somatic mutation provides an important source of variation in a large, long-lived organism such as coast redwood.  相似文献   
6.
《Cell reports》2020,30(5):1373-1384.e4
  1. Download : Download high-res image (144KB)
  2. Download : Download full-size image
  相似文献   
7.
As sessile organisms, plants must adapt to their environment. One approach toward understanding this adaptation is to investigate environmental regulation of gene expression. Our focus is on the environmental regulation of EARLI1, which is activated by cold and long‐day photoperiods. Cold activation of EARLI1 in short‐day photoperiods is slow, requiring several hours at 4 °C to detect an increase in mRNA abundance. EARLI1 is not efficiently cold‐activated in etiolated seedlings, suggesting that photomorphogenesis is necessary for its cold activation. Cold activation of EARLI1 is inhibited in the presence of the calcium channel blocker lanthanum chloride or the calcium chelator EGTA. Addition of the calcium ionophore Bay K8644 results in cold‐independent activation of EARLI1. These data suggest that EARLI1 is not an immediate target of the cold response, and that calcium flux affects its expression. EARLI1 is a putative secreted protein and has motifs found in lipid transfer proteins. Over‐expression of EARLI1 in transgenic plants results in reduced electrolyte leakage during freezing damage, suggesting that EARLI1 may affect membrane or cell wall stability in response to low temperature stress.  相似文献   
8.
9.
Recruitment of the homologous recombination machinery to sites of double‐strand breaks is a cell cycle‐regulated event requiring entry into S phase and CDK1 activity. Here, we demonstrate that the central recombination protein, Rad52, forms foci independent of DNA replication, and its recruitment requires B‐type cyclin/CDK1 activity. Induction of the intra‐S‐phase checkpoint by hydroxyurea (HU) inhibits Rad52 focus formation in response to ionizing radiation. This inhibition is dependent upon Mec1/Tel1 kinase activity, as HU‐treated cells form Rad52 foci in the presence of the PI3 kinase inhibitor caffeine. These Rad52 foci colocalize with foci formed by the replication clamp PCNA. These results indicate that Mec1 activity inhibits the recruitment of Rad52 to both sites of DNA damage and stalled replication forks during the intra‐S‐phase checkpoint. We propose that B‐type cyclins promote the recruitment of Rad52 to sites of DNA damage, whereas Mec1 inhibits spurious recombination at stalled replication forks.  相似文献   
10.
Growth of 2659 Atlantic cod Gadus morhua aged 4 to 9 years examined in Placentia Bay, Newfoundland, peaked in most cases in June and was at a minimum in October or November. Water temperature, partial fullness index ( I P) and gonado‐somatic index ( I G) explained between 31 and 52% of the monthly variability in growth. Temperature and I P of capelin Mallotus villosus had significant effects on growth of all age groups and explained most of the variance for ages 6–8 and 4–5 years, respectively. The I P of large invertebrates (ages 4 to 7 years), sandlance ( Ammodytes sp. age 6 years) and demersal fishes (age 9 years) had age‐specific effects in the model. Overall, amphipods, decapods and echinoderms dominated the Atlantic cod diet in most seasons, but fish consumption by Atlantic cod was high in June and July, particularly on capelin. The rapid increase in somatic mass during June and July occurred despite cold water temperatures ( < 3° C at 50 m) and moderate to high gonado‐somatic index. The findings of this study suggest that when food was not a limiting factor, growth tended to increase even when Atlantic cod occupied colder waters, but when food was limiting, the opposite may have occured.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号