首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   861篇
  免费   831篇
  国内免费   58篇
  2024年   17篇
  2023年   8篇
  2022年   4篇
  2021年   15篇
  2020年   143篇
  2019年   172篇
  2018年   205篇
  2017年   181篇
  2016年   176篇
  2015年   165篇
  2014年   172篇
  2013年   126篇
  2012年   85篇
  2011年   80篇
  2010年   10篇
  2009年   15篇
  2008年   27篇
  2007年   15篇
  2006年   18篇
  2005年   10篇
  2004年   9篇
  2003年   10篇
  2002年   4篇
  2001年   10篇
  2000年   6篇
  1999年   6篇
  1998年   10篇
  1997年   6篇
  1996年   6篇
  1995年   3篇
  1994年   4篇
  1993年   6篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1988年   3篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有1750条查询结果,搜索用时 15 毫秒
1.
Blue light controls solar tracking by flowers of an alpine plant   总被引:2,自引:0,他引:2  
In at least 18 plant families, leaves or flowers can maintain a specific orientation with respect to diurnal movements of the sun. Previous work on heliotropic leaves has demonstrated that blue light (400–500nm) provides the cue for their tracking response. Floral heliotropism occurs in several families of arctic and alpine plants, but the spectral sensitivity of the response has not been studied previously. Moreover, no studies on the spectral sensitivity of any heliotropism have been conducted on wild plants growing in their natural habitat. Working under field conditions, we used coloured acrylic filters to determine whether heliotropism by flowers of the snow buttercup (Ranunculus adoneus) is responsive to broad-band blue or red light. Flowers were able to orient towards the sun under boxes made entirely of blue-transmitting filters and in red-transmitting boxes having a single blue side that faced the sun. In these treatments, solar tracking ability was not significantly different from that observed in adjacent control flowers. In contrast, the precision of solar orientation was significantly reduced in red-transmitting boxes and red boxes with a single blue side oriented away from the sun. In the early morning, flowers covered by red-transmitting boxes failed to orient in the direction of sunrise, suggesting that this floral response, unlike that seen in some heliotropic leaves, lacks a residual‘memory’ for previous solar movements.  相似文献   
2.
The power conversion efficiencies (PCEs) of all-polymer solar cells (all-PSCs) have already exceeded 17%. However, the limited absorption range of an all-polymer system results in significantly reduced short-circuit current density (Jsc), which eventually influences the PCE improvement. To broaden the light absorption of polymer acceptors, herein, benzotriazole is introduced in the core unit of small molecule acceptors and thus two narrow-bandgap polymer acceptors named PTz-BO and PTz-C11 featuring the same molecular backbone and different side-chain length are synthesized. Compared with PTz-C11, the PTz-BO based-all PSCs deliver a slightly reduced Jsc, a large open-circuit voltage (Voc) and a low voltage loss below 0.50 V. Moreover, ternary all-PSCs are constructed by introducing PTz-C11 as a guest component. Benefiting from the reduced recombination, improved exciton generation and dissociation, and balanced charge transport, a high efficiency of 16.58% is obtained for the ternary all-PSCs, with a high Jsc over 25 mA cm−2 without sacrificing the Voc. Such result represents the highest efficiency reported for benzotriazole-based all-PSCs in the literature thus far. This work demonstrates the great potential of benzotriazole for the synthesis of efficient narrow-bandgap polymer acceptors.  相似文献   
3.
Atlantic salmon survival in the R. Bush (N. Ireland) from egg to summer 0+ was inversely density-dependent on egg deposition ( P <0.05). A stock-recruitment relationship derived from egg deposition and summer 0+ abundance index data was compared to that derived from adult and smolt counts based on total trapping. Fitted Ricker curves indicated maximum recruitment at around 2.35 million eggs and 2.46 million eggs for 0+ index and smolt count methods, respectively. Salmon 0+ abundance index data from semi-quantitative electrofishing could be obtained with relatively little effort, and used to derive whole-river stock-recruitment relationships on rivers where only adult count or some other estimator of parental stock is available. The derivation and expression of spawning targets from stock/recruitment relationships is discussed with reference to the R. Bush data.  相似文献   
4.
5.
6.
7.
CsPbI2Br is emerging as a promising all‐inorganic material for perovskite solar cells (PSCs) due to its more stable lattice structure and moisture resistance compared to CsPbI3, although its device performance is still much behind this counterpart. Herein, a preannealing process is developed and systematically investigated to achieve high‐quality CsPbI2Br films by regulating the nucleation and crystallization of perovskite. The preannealing temperature and time are specifically optimized for a dopant‐free poly(3‐hexylthiophene) (P3HT)‐based device to target dopant‐induced drastic performance degradation for spiro‐OMeTAD‐based devices. The resulting P3HT‐based device exhibits comparable power conversion efficiency (PCE) to spiro‐OMeTAD‐based devices but much enhanced ambient stability with over 95% PCE after 1300 h. A diphenylamine derivative is introduced as a buffer layer to improve the energy‐level mismatch between CsPbI2Br and P3HT. A record‐high PCE of 15.50% for dopant‐free P3HT‐based CsPbI2Br PSCs is achieved by alleviating the open‐circuit voltage loss with the buffer layer. These results demonstrate that the preannealing processing together with a suitable buffer layer are applicable strategies for developing dopant‐free P3HT PSCs with high efficiency and stability.  相似文献   
8.
9.
N‐type metal oxides such as hematite (α‐Fe2O3) and bismuth vanadate (BiVO4) are promising candidate materials for efficient photoelectrochemical water splitting; however, their short minority carrier diffusion length and restricted carrier lifetime result in undesired rapid charge recombination. Herein, a 2D arranged globular Au nanosphere (NS) monolayer array with a highly ordered hexagonal hole pattern (hereafter, Au array) is introduced onto the surface of photoanodes comprised of metal oxide films via a facile drying and transfer‐printing process. Through plasmon‐induced resonance energy transfer, the Au array provides a strong electromagnetic field in the near‐surface area of the metal oxide film. The near‐field coupling interaction and amplification of the electromagnetic field suppress the charge recombination with long‐lived photogenerated holes and simultaneously enhance the light harvesting and charge transfer efficiencies. Consequently, an over 3.3‐fold higher photocurrent density at 1.23 V versus reversible hydrogen electrode (RHE) is achieved for the Au array/α‐Fe2O3. Furthermore, the high versatility of this transfer printing of Au arrays is demonstrated by introducing it on the molybdenum‐doped BiVO4 film, resulting in 1.5‐fold higher photocurrent density at 1.23 V versus RHE. The tailored metal film design can provide a potential strategy for the versatile application in various light‐mediated energy conversion and optoelectronic devices.  相似文献   
10.
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been is applied as hole transport material in organic electronic devices for more than 20 years. However, the redundant sulfonic acid group of PEDOT:PSS has often been overlooked. Herein, PEDOT:PSS‐DA is prepared via a facile doping of PEDOT:PSS with dopamine hydrochloride (DA·HCl) which reacts with the redundant sulfonic acid of PSS. The PEDOT:PSS‐DA film exhibits enhanced work function and conductivity compared to those of PEDOT:PSS. PEDOT:PSS‐DA‐based devices show a power conversion efficiency of 16.55% which is the highest in organic solar cells (OSCs) with (poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)‐4‐fluorothiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithio‐phene))‐co‐(1,3‐di(5‐thiophene‐2‐yl)‐5,7‐bis(2‐ethylhexyl)‐benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione))] (PM6):(2,2′‐((2Z,2′Z)‐((12,13‐bis(2‐ethylhexyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐e]thieno[2′′,3′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐b]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile) (Y6) as the active layer. Furthermore, PEDOT:PSS‐DA also exhibits enhanced performance in three other donor/acceptor systems, exhibiting high compatibility in OSCs. This work demonstrates that doping PEDOT:PSS with various amino derivatives is a potentially efficient strategy to enhance the performance of PEDOT:PSS in organic electronic devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号