首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19878篇
  免费   1230篇
  国内免费   1050篇
  2024年   29篇
  2023年   327篇
  2022年   530篇
  2021年   706篇
  2020年   628篇
  2019年   926篇
  2018年   762篇
  2017年   470篇
  2016年   509篇
  2015年   680篇
  2014年   1362篇
  2013年   1492篇
  2012年   1035篇
  2011年   1209篇
  2010年   1018篇
  2009年   903篇
  2008年   1107篇
  2007年   1038篇
  2006年   826篇
  2005年   800篇
  2004年   677篇
  2003年   584篇
  2002年   491篇
  2001年   289篇
  2000年   313篇
  1999年   299篇
  1998年   278篇
  1997年   237篇
  1996年   225篇
  1995年   243篇
  1994年   232篇
  1993年   158篇
  1992年   186篇
  1991年   131篇
  1990年   126篇
  1989年   116篇
  1988年   87篇
  1987年   92篇
  1986年   82篇
  1985年   118篇
  1984年   150篇
  1983年   123篇
  1982年   131篇
  1981年   67篇
  1980年   86篇
  1979年   66篇
  1978年   46篇
  1977年   43篇
  1976年   29篇
  1974年   27篇
排序方式: 共有10000条查询结果,搜索用时 269 毫秒
1.
Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor-derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography–tandem mass spectrometry. Most of the 1481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1–like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.  相似文献   
2.
Primary cell cultures were prepared from breast muscles of 11 day 4 hour-embryonic chicks. Cytoplasmic RNAs were isolated from the cultured cells at various time intervals from day 3 to day 8. A [P32] DNA probe complementary to messenger RNA of myosin heavy chain was used to hybridize with the RNAs after gel electrophoresis. A transient species of polyadenylated RNA with a decreased mobility in electrophoresis was detected during a period of time when contractions of syncytial fibers were first observed.  相似文献   
3.
Transient receptor potential melastatin 4 (TRPM4) is a broadly expressed Ca2+ activated monovalent cation channel that contributes to the pathophysiology of several diseases.For this study, we generated stable CRISPR/Cas9 TRPM4 knockout (K.O.) cells from the human prostate cancer cell line DU145 and analyzed the cells for changes in cancer hallmark functions. Both TRPM4-K.O. clones demonstrated lower proliferation and viability compared to the parental cells. Migration was also impaired in the TRPM4-K.O. cells. Additionally, analysis of 210 prostate cancer patient tissues demonstrates a positive association between TRPM4 protein expression and local/metastatic progression. Moreover, a decreased adhesion rate was detected in the two K.O. clones compared to DU145 cells.Next, we tested three novel TRPM4 inhibitors with whole-cell patch clamp technique for their potential to block TRPM4 currents. CBA, NBA and LBA partially inhibited TRPM4 currents in DU145 cells. However, none of these inhibitors demonstrated any TRPM4-specific effect in the cellular assays.To evaluate if the observed effect of TRPM4 K.O. on migration, viability, and cell cycle is linked to TRPM4 ion conductivity, we transfected TRPM4-K.O. cells with either TRPM4 wild-type or a dominant-negative mutant, non-permeable to Na+. Our data showed a partial rescue of the viability of cells expressing functional TRPM4, while the pore mutant was not able to rescue this phenotype. For cell cycle distribution, TRPM4 ion conductivity was not essential since TRPM4 wild-type and the pore mutant rescued the phenotype.In conclusion, TRPM4 contributes to viability, migration, cell cycle shift, and adhesion; however, blocking TRPM4 ion conductivity is insufficient to prevent its role in cancer hallmark functions in prostate cancer cells.  相似文献   
4.
Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12–Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12–Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113–131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64–99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.  相似文献   
5.
  相似文献   
6.
7.
Summary Using restriction enzyme digests of genomic DNA extracted from the leaves of 25 hexaploid wheat (Triticum aestivum L. em. Thell.) cultivars and their hybrids, restriction fragment length polymorphisms of the spacer DNA which separates the ribosomal-RNA genes have been examined. (From one to three thousand of these genes are borne on chromosomes 1B and 6B of hexaploid wheat). The data show that there are three distinct alleles of the 1B locus, designated Nor-B1a, Nor-B1b, and Nor-B1c, and at least five allelic variants of the 6B locus, designated Nor-B2a, Nor-B2b, Nor-B2c, Nor-B2d, and Nor-B2e. A further, previously reported allele on 6B has been named Nor-B2f. Chromosome 5D has only one allelic variant, Nor-D3. Whereas the major spacer variants of the 1B alleles apparently differ by the loss or gain of one or two of the 133 bp sub-repeat units within the spacer DNA, the 6B allelic variants show major differences in their compositions and lengths. This may be related to the greater number of rDNA repeat units at this locus. The practical implications of these differences and their application to wheat breeding are discussed.  相似文献   
8.
Summary A temperature shift-up accompanied by a reduction in RNA polymerase activity in Escherichia coli causes an increased rate of initiation leading to a 1.7- to 2.2-fold increase in chromosome copy number. A temperature shift-up without a reduction in polymerase activity induces only a transient non-scheduled initiation of chromosome replication caused by heat shock with no detectable effect on chromosome copy number.  相似文献   
9.
Recent studies have discovered strong differences between the dynamics of nucleic acids (RNA and DNA) and proteins, especially at low hydration and low temperatures. This difference is caused primarily by dynamics of methyl groups that are abundant in proteins, but are absent or very rare in RNA and DNA. In this paper, we present a hypothesis regarding the role of methyl groups as intrinsic plasticizers in proteins and their evolutionary selection to facilitate protein dynamics and activity. We demonstrate the profound effect methyl groups have on protein dynamics relative to nucleic acid dynamics, and note the apparent correlation of methyl group content in protein classes and their need for molecular flexibility. Moreover, we note the fastest methyl groups of some enzymes appear around dynamical centers such as hinges or active sites. Methyl groups are also of tremendous importance from a hydrophobicity/folding/entropy perspective. These significant roles, however, complement our hypothesis rather than preclude the recognition of methyl groups in the dynamics and evolution of biomolecules.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号