首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   28篇
  国内免费   16篇
  2023年   9篇
  2022年   4篇
  2021年   8篇
  2020年   12篇
  2019年   6篇
  2018年   14篇
  2017年   3篇
  2016年   11篇
  2015年   9篇
  2014年   12篇
  2013年   20篇
  2012年   8篇
  2011年   10篇
  2010年   18篇
  2009年   8篇
  2008年   11篇
  2007年   12篇
  2006年   15篇
  2005年   10篇
  2004年   9篇
  2003年   12篇
  2002年   7篇
  2001年   6篇
  2000年   12篇
  1999年   13篇
  1998年   7篇
  1997年   8篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   9篇
  1991年   4篇
  1990年   3篇
  1989年   8篇
  1988年   5篇
  1987年   4篇
  1986年   2篇
  1985年   5篇
  1984年   8篇
  1983年   10篇
  1982年   2篇
  1981年   4篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有354条查询结果,搜索用时 482 毫秒
1.
Motility and orientation has been studied in the unicellular photosynthetic flagellate, Euglena gracilis, using real time image analysis capable of tracking up to 200 cells simultaneously in the slow rotating centrifuge microscope (NIZEMI) which allows one to observe the cells' swimming behavior during centrifugation accelerations between 1 g and 5 g. At 1 g the cells show a weak negative gravitaxis, which increases significantly at higher accelerations up to about 3 g. Though most cells were capable of swimming even against an acceleration of 4.5 g, the degree of gravitaxis decreased and some of the cells were passively moved downward by the acceleration force; this is true for most cells at 5 g. The velocity of cells swimming against 1 g is about 10% lower than that of cells swimming in other directions. The velocity decreases even more drastically in cells swimming against higher acceleration forces than those at 1 g. The degree of gravitactic orientation drastically decreases after short exposure to artificial UV radiation which indicates that gravitaxis may be due to an active physiological perception rather than a physical effect such as an asymmetry of the center of gravity within the cell. Offprint requests to: D.-P. Häder  相似文献   
2.
1. Initiation of subsynaptic sarcolemmal specialization and expression of different molecular forms of AChE were studied in fast extensor digitorum longus (EDL) and slow soleus (SOL) muscle of the rat under different experimental conditions in order to understand better the interplay of neural influences with intrinsic regulatory mechanisms of muscle cells. 2. Former junctional sarcolemma still accumulated AChE and continued to differentiate morphologically for at least 3 weeks after early postnatal denervation of EDL and SOL muscles. In noninnervated regenerating muscles, postsynaptic-like sarcolemmal specializations with AChE appeared (a) in the former junctional region, possibly induced by a substance in the former junctional basal lamina, and (b) in circumscribed areas along the whole length of myotubes. Therefore, the muscle cells seem to be able to produce a postsynaptic organization guiding substance, located in the basal lamina. The nerve may enhance the production or accumulation of this substance at the site of the future motor end plate. 3. Significant differences in the patterns of AChE molecular forms in EDL and SOL muscles arise between day 4 and day 10 after birth. The developmental process of downregulation of the asymmetric AChE forms, eliminating them extrajunctionally in the EDL, is less efficient in the SOL. The presence of these AChE forms in the extrajunctional regions of the SOL correlates with the ability to accumulate AChE in myotendinous junctions. The typical distribution of the asymmetric AChE forms in the EDL and SOL is maintained for at least 3 weeks after muscle denervation. 4. Different patterns of AChE molecular forms were observed in noninnervated EDL and SOL muscles regenerating in situ. In innervated regenerates, patterns of AChE molecular forms typical for mature muscles were instituted during the first week after reinnervation. 5. These results are consistent with the hypothesis that intrinsic differences between slow and fast muscle fibers, concerning the response of their AChE regulating mechanism to neural influences, may contribute to different AChE expression in fast and slow muscles, in addition to the influence of different stimulation patterns.  相似文献   
3.
Summary Many neurones are extremely invaginated and possess branching processes, axons and dendrites. In general, they are surrounded by a restricted diffusion space. Many of these cells exhibit large, slow potential changes during the passage of current across their membranes. Whenever currents cross membranes separating aqueous solutions, differences in transport numbers of the major permeant ions give rise to local concentration changes of these ions adjacent to the membranes, which will result in various electrical and osmotic effects. These transport number effects are expected to be enhanced by the presence of membrane invaginations. Dendrites are equivalent to reversed invaginations and there should be significant changes in concentrations of permeant ions within them. In general, the effects of such changes on the electrical response of a cell will be greater when the concentration of a major permeant ion is low. The effects have been modelled in terms of two nondimensional parameters: the invagination transport number parameter and the relative area occupied by the invaginations A. If these two parameters are known, the magnitudes and time course of the slow potential changes can immediately be estimated and the time course converted to real time, if the length of the invaginations (l) and ionic diffusion coefficient (D) within them are also known. Both analytical and numerical solutions have been given and predictions compared. It is shown that in the case of large currents and potentials the analytical solution predictions will underestimate the magnitudes and rates of onset of the voltage responses. The relative magnitude of the transport number effect within the invaginations (or dendrites) and other transport number contributions to slow potential changes have also been assessed and order-of-magnitude values of these are estimated for some biological data.  相似文献   
4.
Many studies have established a correlation of differences in the activities of various muscle types with differences in the expression of myosin isoforms. In this paper we report the sequence determination of myosin light chain-2 from rabbit slow skeletal (LC2s) and ventricular (LC2v) nmscles. We sequenced tryptic peptides from LC2v which account for all except a few terminal amino acid residues. The major part (87 residues) of the rabbit LC2s sequence, obtained from tryptic and cyanogen bromide (CNBr) peptides, was found to be identical to rabbit LC2v. Our results provide the first sequence information on LC2s from any species, and lend strong support to the hypothesis that LC2s and LC2v are identical. Comparisons of rabbit LC2v and LC2s with rabbit LC2f (from fast skeletal muscle), and also with chicken LC2f and LC2v, show clearly that LC2s and LC2v from mammalian and avian species are more closely related to each other than they are to LC2f isoforms from the same species.  相似文献   
5.
Flavonoids: potent inhibitors of arachidonate 5-lipoxygenase   总被引:2,自引:0,他引:2  
Various flavonoids were found to be relatively selective inhibitors of arachidonate 5-lipoxygenase which initiates the biosynthesis of leukotrienes with the activity of slow reacting substance of anaphylaxis. Cirsiliol (3',4',5-trihydroxy-6,7-dimethoxyflavone) was most potent, and the enzyme partially purified from rat basophilic leukemia cells was inhibited by 97% at a concentration of 10 microM (IC50, about 0.1 microM). 12-Lipoxygenases from bovine platelets and porcine leukocytes were also inhibited but at higher concentrations (IC50, about 1 microM), and fatty acid cyclooxygenase purified from bovine vesicular gland was scarcely affected. The compound at 10 microM suppressed by 99% the immunological release of slow reacting substance of anaphylaxis from passively sensitized guinea pig lung (IC50, about 0.4 microM).  相似文献   
6.
轴浆转运在神经再生中的作用   总被引:11,自引:1,他引:10  
甘思德  易钟煜 《动物学报》1989,35(2):158-163
夹伤坐骨神经阻断标记蛋白在轴浆中的快、慢转运。3天后转运再现。第14天的转运距离与对照相似,说明再生神经的转运动能基本恢复。用快、慢转运测出的14天平均再生速度分别为1.77±0.14与1.96±0.07mm/d,比对照神经的正常生长速度快6.3—7倍,提示再生需要更多的转运物质。进一步发现再生神经中某些标记蛋白(慢转运波W1)的转运速度为10.25±0.66mm/d,约比对照快1倍,因此这些标记蛋白可能包含适应再生需要而加速转运的结构和功能物质。  相似文献   
7.
Slow cortical potential biofeedback and the startle reflex   总被引:4,自引:0,他引:4  
The negativity of slow cortical potentials (SCP) of the surface EEG is a measure of brain excitability, correlating with motor and cognitive preparation. Selfcontrol of SCP positivity has been shown to reduce seizure activity. Following SCP biofeedback from a central EEG electrode position, subjects gained bidirectional control over their SCP. The current study used a modified feedback methodology, and found a positive relationship between negativity and magnitude of EMG startle response (a measure of cortical and subcortical arousal, particularly aversive response disposition). Greater success in SCP differentiation was associated with self-report of less relaxation during negativity training.This research was supported by the Deutsche Forschungsgemeinschaft under grant No. SFB 307.  相似文献   
8.
9.
We analyzed the fiber-type composition of the soleus muscle in rats and mice to determine whether the adult proportion of fiber types is fixed soon after birth or whether it changes during postnatal maturation. We examined muscles from animals varying in age from 1 week to 1 year using monoclonal antibodies that distinguish between fast and slow isoforms of myosin heavy chains. In cross sections of unfixed muscle containing profiles of all myofibers in the muscle, we counted the fibers that stained with antibodies to fast myosin, and in adjacent sections, those that stained positive with an antibody to slow myosin. We also counted the total number of fibers in each section. Rat soleus contained about 2500 myofibers, and mouse about 1000 at all ages studied, suggesting that myogenesis ceases in soleus by 1 week after birth or sooner. In mouse soleus, the relative proportions of fibers staining positive with fast and slow myosin antibodies were similar at all ages studied, about 60%–70% being fast and 30%–40% slow. In rat soleus, however, the proportions of fast antibody-positive and slow antibody-positive fibers changed dramatically during postnatal maturation. At 1 week after birth, about 50% of rat soleus fibers stained with fast myosin antibodies, whereas between 1 and 2 months this value fell to about 10%. In mouse, about 10% of fibers at 1 week, but none at 1 year, reacted with both fast and slow antibodies, whereas in rat, fewer than 3% bound both antibodies to a significant degree at 1 week. It is puzzling why, in rat soleus, the majority of apparently fast fibers present at 1 week is converted to a slow phenotype, whereas in mouse soleus the predominant change appears to be the suppression of fast myosin expression in a subset of fibers that expresses both myosin types at 1 week. It is possible that this may be related to differences in size and the amount of body growth between these two species.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号