首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2014年   1篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2003年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1992年   3篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
Fish commonly respond to stress, including stress from chemical exposures, with reduced growth. However, the relevance to wild populations of subtle and sometimes transitory growth reductions may not be obvious. At low-level, sustained exposures, Cu is one substance that commonly causes reduced growth but little mortality in laboratory toxicity tests with fish. To explore the relevance of growth reductions under laboratory conditions to wild populations, we (1) estimated growth effects of low-level Cu exposures to juvenile Chinook salmon (Oncorhynchus tshawytscha), (2) related growth effects to reduced survival in downriver Chinook salmon migrations, (3) estimated population demographics, (4) constructed a demographically structured matrix population model, and (5) projected the influence of Cu-reduced growth on population size, extinction risks, and recovery chances. Reduced juvenile growth from Cu in the range of chronic criteria concentrations was projected to cause disproportionate reductions in survival of migrating juveniles, with a 7.5% length reduction predicting about a 23% to 52% reduction in survival from a headwaters trap to the next census point located 640 km downstream. Projecting reduced juvenile growth out through six generations (~30 years) resulted in little increased extinction risk; however, population recovery times were delayed under scenarios where Cu-reduced growth was imposed.  相似文献   
2.
3.
Freshwater zooplankton is increasingly used to study effects of dispersal on community and metacommunity structure. Yet, it remains unclear how zooplankton disperses. Clearly, birds and wind play a significant role as zooplankton dispersal agents, but they may not always be the main vectors. This experimental study shows that a cosmopolitan aquatic insect, Notonecta, can be an important vector of cladoceran resting eggs (ephippia). Dispersing Notonecta frequently transported ephippia during flight, with a bias towards smaller ephippia in two species. A similar trend was present at the species level: Daphnia species with smaller ephippia were more often dispersed, suggesting that Notonecta could generate specific colonist communities. In addition, buoyancy appeared a critical trait, as non-floating ephippia of Daphnia magna were never dispersed. Our data suggest that Notonecta could be important dispersers of Daphnia, and that knowledge of dispersal dynamics of Notonecta may be used to predict Daphnia dispersal, colonization and resilience to disturbance.  相似文献   
4.
Size-selective harvesting, where the large individuals of a particular species are preferentially taken, is common in both marine and terrestrial habitats. Preferential removal of larger individuals of a species has been shown to have a negative effect on its demography, life history and ecology, and empirical studies are increasingly documenting such impacts. But determining whether the observed changes represent evolutionary response or phenotypic plasticity remains a challenge. In addition, the problem is not recognized in most management plans for fish and marine invertebrates that still mandate a minimum size restriction. We use examples from both aquatic and terrestrial habitats to illustrate some of the biological consequences of size-selective harvesting and discuss possible future directions of research as well as changes in management policy needed to mitigate its negative biological impacts.  相似文献   
5.
We explored macroinvertebrate size-differential drift in the lower Mississippi River (a 9th order system). Because this river system is highly turbid, we hypothesized that visually-dependent vertebrate predators feeding on drifting organisms would be at a disadvantage. Thus, size-differential drift should not occur. For one 24-hour period in both January and April, six drift nets were used to sample surface drift. Nets were emptied once every four hours. Individual intra-ocular distances of three macroinvertebrate species (Hydropsyche orris: Trichoptera, Hexagenia limbata: Ephemeroptera, Macrobrachium ohione: Crustacea) were measured. Percentages of size classes in the drift were determined. In both months, large individuals of H. orris and H. limbata were prevalent in the nocturnal but scarce in the diurnal drift. In January, large M. ohione drifted regardless of time. In April, large M. ohione predominated the nocturnal drift. Our results could not be attributed solely to vertebrate predator avoidance. Other mechanisms such as diel microhabitat migration and current velocity may have accounted for the results.  相似文献   
6.
Seasonal variation of egg size and number in a Daphnia pulex population   总被引:4,自引:4,他引:0  
Seasonal variation of egg size and number was examined in a Daphnia pulex population inhabiting a vernal pond. In this population, size at maturity declines at midseason, probably as an adaptive response to size-selective predation by larvae of the salamander Ambystoma. The larger early season individuals produce more and larger eggs than the smaller late season individuals. Age at maturity does not vary between seasons. Laboratory experiments indicate that temperature may affect egg size, egg number and size at maturity. However, field data suggest that temperature accounts for only a small fraction of the total variation in egg size and number. Indirect measures of nutrition indicate that food limitation does not cause the seasonal decline in egg size and number. The seasonal change in reproductive traits is well correlated with changes in invertebrate and vertebrate predation. Examination of predator feeding preferences and their impact on Daphnia mortality indicate that variation of reproductive traits is most likely a complex adaptation to changing predation regimes.  相似文献   
7.
Various approaches to modeling the population dynamics and demography of Daphnia have been published. These methods range from the simple egg-ratio method, to mathematically complex models based on partial differential equations and numerically complex individual-based Daphnia population models. The usefulness of these models in unraveling the population dynamics and demography of Daphnia under natural conditions is discussed. Next to this, an extended version of an existing individual-based Daphnia model is documented (Cladosim) and its application to a typical field data set collected in 1995 in Lake Volkerak is shown. To answer the question which factor was limiting Daphnia numbers during the course of the season food level and temperature in the model were varied and results were compared with those obtained for the observed food level and temperature. These analysis showed that in April temperature was limiting while during May–July and September–October food was limiting. In August neither temperature nor food was limiting. Analysis with a set of size-selective mortality scenarios showed that on average the Daphnia population in Lake Volkerak experienced a mild positive size-selective mortality during the year that was analyzed. Birth rates derived with the detailed individual-based model were compared with those derived with the much simpler egg-ratio method. For the conditions as observed in Lake Volkerak in 1995, both methods gave very comparable results, despite sampling intervals of up to four weeks. The same holds under the environmental scenarios. Using the size-selective mortality scenarios it could be shown, however, that under strong mortality of the smaller daphnids, the egg-ratio method severely underestimates the birth rate. The vices and virtues of the new model and potential extensions are discussed.  相似文献   
8.
I develop a demographic model that examines the impact of Chaoborus predation on the population dynamics and life history of Daphnia. Predation effects are determined through analysis of the various components of the predator-prey interaction (encounter, attack, strike efficiency), and are integrated into a stage-classified matrix population model. The model is parameterized with data from interactions between D. pulex and fourth-instar C. americanus. I test this model with two laboratory experiments that examine population growth of D. pulex under the influence of five different levels of Chaoborus predation. With the exception of a single predation treatment in each experiment, the model accurately predicted the observed reduction in Daphnia numbers with increasing Chaoborus predation. I then use this model to investigate the evolution of delayed reproduction in D. pulex that are exposed to Chaoborus. I ask whether delayed reproduction may evolve in Daphnia that are subjected to Chaoborus predation as a trade-off for the benefits of larger body size. The model predicts that the effectiveness of such a life history trade-off depends on the relative sizes of predator and prey. In some interactions between Chaoborus and Daphnia, increasing Daphnia body length by as little as 5% from base growth trajectories sufficiently increases fitness (by reducing vulnerability to Chaoborus predation) to compensate for the cost of delayed reproduction. In other interactions, however, increased body length provides no benefit to Daphnia (and may even reduce fitness), and selection would act against the evolution of delayed reproduction. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
9.
A laboratory model of phosphorus release by Daphnia rosea was implemented for published zooplankton data from lakes characterized by different abundances of size-selective planktivores. Size-selective feeding reduces average prey size and increases P release per unit biomass. At the system level, decreased prey standing crop associated with higher planktivore abundance could balance the size dependent increase in P release rate. However, estimates of both net reduction and net increase in rate of P release from zooplankton resulted from model application. Size-selective feeding might be important not only in energetic or evolutionary relationships between predator and prey but also in determination of the relative importance of different pathways of phosphorus flow through pelagic systems.  相似文献   
10.
Many animal species across different taxa change their habitat during their development. An ontogenetic habitat shift enables the development of early vulnerable-to-predation stages in a safe “nursery” habitat with reduced predation mortality, whereas less vulnerable stages can exploit a more risky, rich feeding habitat. Therefore, the timing of the habitat shift is crucial for individual fitness. We investigate the effect that size selectivity in mortality in the rich feeding habitat has on the optimal body size at which to shift between habitats using a population model that incorporates density dependence. We show that when mortality risk is more size dependent, it is optimal to switch to the risky habitat at a smaller rather than larger body size, despite that individuals can avoid mortality by staying longer in the nursery habitat and growing to safety in size. When size selectivity in mortality is high, large reproducing individuals are abundant and produce numerous offspring that strongly compete in the nursery habitat. A smaller body size at habitat shift is therefore favored because strong competition reduces growth potential. Our results reveal the interdependence among population structure, density dependence, and life history traits, and highlight the need for integrating ecological feedbacks in the study of life history evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号