首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   5篇
  国内免费   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
  2014年   5篇
  2013年   21篇
  2012年   5篇
  2011年   5篇
  2010年   4篇
  2008年   5篇
  2007年   4篇
  2006年   5篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   5篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1973年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
1.
Cyanelles from Cyanophora paradoxa can easily be isolated and assayed for their carrier composition by the silicone oil filtering technique. The present investigation demonstrates a Pi-translocator transferring phosphate, dihydroxyacetone phosphate and 3-phosphoglycerate in a counter exchange mode in cyanelles as in chloroplasts of higher plants. The uptake of Pi is inhibited by dihydroxyacetone phosphate, phosphoglycerate and glucose-6-P, only poorly by phosphoenolpyruvate and not by 2-phosphoglycerate. The inhibitors pyridoxalphosphate and 4,4′diisothiocyanostilbene-2,2K'disulfonic acid at low concentration also affect Pi-uptake. Cyanelles probably transport photosynthate (reductant and ATP) by triosephosphates. This is the first demonstration of a phosphate translocator in an organism of a low evolutionary scale. Cyanelles also transport glucose which proceeds in two phases. In the lower concentration range (≤ 2.5 mM), glucose penetrates by facilitated diffusion, whereas transport follows first-order kinetics at higher amounts (> 2.5 mM). In the low concentration range, glucose-transport is affected by high concentrations of 3-O-methylglucose and fructose. The physiological role of the glucose-transport carrier in Cyanophora is doubtful. It may function in transporting glucose into cyanelles if the carbon level inside them becomes limiting, e.g. in dark periods.  相似文献   
2.
A long-term monitoring programme from 2005 to 2021 has allowed the assessment of age and longevity in an endangered seahorse Hippocampus whitei in the wild. Seahorses were marked using visible implant fluorescent elastomer (VIFE) which allows for individual identification. The longest period from marking to last sighting was 6 years 8 months and 17 days for a female. Using a von Bertalanffy growth function model for the species, this individual would have been approximately 7 years 7 months old on last sighting. These observations suggest that seahorses in the wild can live for over 7 years and demonstrate the benefits of using VIFE in long-term movement, population abundance and life-history studies of seahorses.  相似文献   
3.
Cell migration is fundamental to many biological processes, including development, normal tissue remodeling, wound healing, and many pathologies. However, cell migration is a complex process, and understanding its regulation in health and disease requires the ability to manipulate and measure this process quantitatively under controlled conditions. This report describes a simple in vitro assay for quantitative analysis of cell migration in two-dimensional cultures that is an inexpensive alternative to the classic “scratch” assay. The method described utilizes flexible silicone masks fabricated in the lab according to the research demands of the specific experiment to create a cell-free area for cells to invade, followed by quantitative analysis based on widely available microscopic imaging tools. This experimental approach has the important advantage of visualizing cell migration in the absence of the cellular damage and disruption of the substrate that occurs when the “wound” is created in the scratch assay. This approach allows the researcher to study the intrinsic migratory characteristics of cells in the absence of potentially confounding contributions from cellular responses to injury and disruption of cell–substrate interactions. This assay has been used with vascular smooth muscle cells, fibroblasts, and epithelial cell types, but should be applicable to the study of practically any type of cultured cell. Furthermore, this method can be easily adapted for use with fluorescence microscopy, molecular biological, or pharmacological manipulations to explore the molecular mechanisms of cell migration, live cell imaging, fluorescence microscopy, and correlative immunolabeling.  相似文献   
4.

Laryngectomized patients use indwelling silicone rubber voice prostheses, placed in a surgically created fistula in between the trachea and the esophagus, for voice and speech rehabilitation. At the esophageal side, these voice prostheses rapidly become colonized by a thick biofilm consisting of a variety of oral and skin bacteria and yeasts, and on average, after 3–4 months a prosthesis has to be replaced. In this study, the influence of caffeinated soft drinks on biofilm formation on silicone rubber voice prostheses has been investigated in a modified Robbins device. Robbins devices were first inoculated with the total cultivable microflora from an explanted voice prosthesis for 3 d, after which the devices were perfused three times daily over a 12 day period with 650 ml of either phosphate buffered saline or carbonated mineral water (controls), caffeinated soft drinks (two types), or a decaffeinated and a sugar‐free version of one of the caffeinated soft drinks. At the end of a day, during the experimental period, the devices were filled with growth medium for 30 min. Both caffeinated soft drinks reduced bacterial prevalence in the biofilms to 1–5% of the control, while yeasts thrived in voice prosthetic biofilms exposed to caffeinated soft drinks. Neither the controls, nor the decaffeinated soft drink, nor the sugar‐free version of this showed these effects on bacterial prevalence.  相似文献   
5.
Recent demands for non-toxic antifouling technologies have led to increased interest in coatings based on silicone elastomers that ‘release’ macrofouling organisms when hydrodynamic conditions are sufficiently robust. However, these types of coatings accumulate diatom slimes, which are not released even from vessels operating at high speeds ( > 30 knots). In this study, adhesion strength and motility of three common fouling diatoms (Amphora coffeaeformis var. perpusilla (Grunow) Cleve, Craspedostauros australis Cox and Navicula perminuta Grunow) were measured on a polydimethylsiloxane elastomer (PDMSE) and acid-washed glass. Adhesion of the three species was stronger to PDMSE than to glass but the adhesion strengths varied. The wall shear stress required to remove 50% of cells from PDMSE was 17 Pa for Craspedostauros, 24 Pa for Amphora and >> 53 Pa for Navicula; the corresponding values for glass were 3, 10 and 25 Pa. In contrast, the motility of the three species showed little or no correlation between the two surfaces. Craspedostauros moved equally well on glass and PDMSE, Amphora moved more on glass initially before movement ceased and Navicula moved more on PDMSE before movement ceased. The results show that fouling diatoms adhere more strongly to a hydrophobic PDMSE surface, and this feature may contribute to their successful colonization of low surface energy, foul-release coatings. The results also indicate that diatom motility is not related to adhesion strength, and motility does not appear to be a useful indicator of surface preference by diatoms.  相似文献   
6.
Significantly higher numbers of zoospores of the fouling, green alga Enteromorpha adhered to silicone elastomers cured by dibutyltin dilaurate (DBTDL) than to identical polymers cured by dibutyltin diacetate (DBTDA). Enhanced zoospore adhesion was shown to be due to the presence of DBTDL and the effect was concentration‐dependent. Further experiments revealed that enhanced zoospore adhesion also occurred to glass coverslips coated with lauric acid (C12) and other saturated fatty acids. The possibility that fatty acids may act as chemical cues (chemoattractants), guiding motile zoospores to the substratum for settlement in the natural environment is discussed. Settlement of other fouling organisms to DBTDL‐cured silicone elastomers is currently being investigated.  相似文献   
7.
Barnacle adhesion strength was used to screen seventy-seven polydimethylsiloxane elastomeric coatings for fouling-release properties. The test coatings were designed to investigate the effect on barnacle adhesion strength of silicone fluid additive type, additive location, additive molecular weight, additive loading level, mixtures of additives, coating matrix type and coating fillers. The type of silicone fluid additive was the primary controlling factor in barnacle fouling-release. The type of silicone matrix in which the fluid resided was found to alter the effect on fouling-release. Two PDMS fluids, DMSC15 and DBE224, significantly reduced the adhesion strength of barnacles compared to unmodified elastomers. Optimum fouling-release performance was dependent on the interaction of fluid type and elastomeric matrix.  相似文献   
8.
The effect of flash photography on seahorse species has never been tested. An experiment was established to test the effect of flash photography and the handling of Hippocampus whitei, a medium‐sized seahorse species endemic to Australia, on their behavioural responses, movements and site persistence. A total of 24 H. whitei were utilized in the experiment with eight in each of the three treatments (flash photography, handling and control). The effect of underwater flash photography on H. whitei movements was not significant; however, the effect of handling H. whitei to take a photograph had a significant effect on their short‐term behavioural responses to the photographer. Kaplan–Meier log‐rank test revealed that there was no significant difference in site persistence of H. whitei from each of the three treatments and that flash photography had no long‐term effects on their site persistence. It is concluded that the use of flash photography by divers is a safe and viable technique with H. whitei, particularly if photographs can be used for individual identification purposes.  相似文献   
9.
Biofilms on silicone rubber voice prostheses are the major cause for frequent failure and replacement of these devices. The presence of both bacterial strains and yeast has been suggested to be crucial for the development of voice prosthetic biofilms. Adhesive interactions between Candida albicans, Candida krusei, and Candida tropicalis with 14 bacterial strains, all isolated from explanted voice prostheses were investigated in a parallel plate flow chamber. Bacteria were first allowed to adhere to silicone rubber, after which the flow chamber was perfused with yeast, suspended either in saliva or buffer. Generally, when yeast were adhering from buffer and saliva, the presence of adhering bacteria suppressed adhesion of yeast. In saliva, Rothia dentocariosa and Staphylococcus aureus enhanced adhesion of yeast, especially of C. albicans. This study shows that bacterial adhesion mostly reduces subsequent adhesion of yeast, while only a few bacterial strains stimulate adhesion of yeast, provided salivary adhesion mediators are present. Interestingly, different clinical studies have identified R. dentocariosa and S. aureus in biofilms on explanted prostheses of patients needing most frequent replacement, while C. albicans is one of the yeast generally held responsible for silicone rubber deterioration.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号