首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2005年   3篇
  1996年   1篇
  1990年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
Regulation and functional significance of phospholipase D in myocardium   总被引:3,自引:0,他引:3  
There is now clear evidence that receptor-dependent phospholipase D is present in myocardium. This novel signal transduction pathway provides an alternative source of 1,2-diacylglycerol, which activates isoforms of protein kinase C. The members of the protein kinase C family respond differently to various combinations of Ca2+, phosphatidylserine, molecular species of 1,2-diacylglycerol and other membrane phospholipid metabolites including free fatty acids. Protein kinase C isozymes are responsible for phosphorylation of specific cardiac substrate proteins that may be involved in regulation of cardiac contractility, hypertrophic growth, gene expression, ischemic preconditioning and electrophysiological changes. The initial product of phospholipase D, phosphatidic acid, may also have a second messenger role. As in other tissues, the question how the activity of phospholipase D is controlled by agonists in myocardium is controversial. Agonists, such as endothelin-1, atrial natriuretic factor and angiotensin 11 that are shown to activate phospholipase D, also potently stimulate phospholipase C- in myocardium. PMA stimulation of protein kinase C inactivates phospholipase C and strongly activates phospholipase D and this is probably a major mechanism by which agonists that promote phosphatidyl-4,5-bisphosphate hydrolysis secondary activate phosphatidylcholine-hydrolysis. On the other hand, one group has postulated that formation of phosphatidic acid secondary activates phosphatidyl-4,5-bisphosphate hydrolysis in cardiomyocytes. Whether GTP-binding proteins directly control phospholipase D is not clearly established in myocardium. Phospholipase D activation may also be mediated by an increase in cytosolic free Ca2+ or by tyrosine-phosphorylation.  相似文献   
3.
植物防御反应的两种信号转导途径及其相互作用   总被引:23,自引:0,他引:23  
植物遭到病虫害时质膜两侧的离子发生跨膜交换、释放钙离子、产生大量的活性氧并产生蛋白质磷酸化,通过水杨酸、茉莉酸以及乙烯信号转导途径激活了PR1、BGL2等防御相关基因.这些基因的表达产物如蛋白酶抑制剂(proteinase inhibitor,PI)等能够抑制植食性昆虫的消化酶以及增加细胞壁厚度,从而增强了对昆虫和病原菌等的抵抗力.植物的各种防御信号途径之间既存在拮抗作用又有协同作用,共同组成了一个复杂的防御体系,在一定程度上有效地抵御各种生物胁迫.  相似文献   
4.
The specific recognition of phytopathogenic bacteria by plant cells is generally mediated by a number of signal molecules. The elicitor-active lipopolysaccharides (LPS) of the phytopathogenic bacterium Xanthomonas campestris pv. campestris (X.c.c) are recognized by its non-host plant Nicotiana tabacum (N.t.). This LPS was purified and labelled with fluorescein isothiocyanate (FITC) for monitoring the fate of these signal molecules in intact plant cells of tobacco. In this study we were able to show that the so-labelled LPS rapidly bound to the cell wall and was then internalized into the cells in a temperature- and energy-dependent way. This uptake of LPS could be outcompeted by the addition of an excess of unlabelled LPS. Furthermore, it was blocked by amantadine, an inhibitor of receptor-mediated endocytosis of mammalian cells. Immunolocalization experiments showed for the first time a significant co-localization of the LPS-elicitor with endosomal structures using an anti-Ara6 antibody. These observations suggest specific endocytosis of LPS(X.c.c.) into tobacco cells. The possibility for a receptor-mediated endocytosis comparable to the mammalian system will be discussed.  相似文献   
5.
G蛋白调节剂对梨花粉萌发及花粉胞内Ca2+浓度变化的影响   总被引:1,自引:0,他引:1  
用激光共聚焦技术研究了异三聚体G蛋白活性调节剂对梨花粉萌发、花粉管生长及花粉细胞内游离钙离子浓度动态的影响。结果表明:异三聚体G蛋白激活剂霍乱毒素(CTX)可促进梨花粉萌发与花粉管生长,而其抑制剂百日咳毒素(PTX)则抑制花粉萌发与花粉管生长;霍乱毒素处理后,花粉细胞内产生特异性的“钙瞬变”信号,而百日咳毒素处理后则引起花粉细胞内游离钙离子浓度的持续下降。这表明:异三聚体G蛋白可能参与了梨花粉萌发与花粉管生长的调控过程,G蛋白的活性变化对花粉萌发的效应可能是通过调控花粉细胞内游离Ca^2 浓度的动态变化产生特异性的钙信号来实现的。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号