首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   6篇
  国内免费   2篇
  2024年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2010年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1993年   2篇
  1991年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
A novel low‐cost nanoporous polytetrafluoroethylene (PTFE)/silica composite separator has been prepared and evaluated for its use in an all‐vanadium redox flow battery (VRB). The separator consists of silica particles enmeshed in a PTFE fibril matrix. It possesses unique nanoporous structures with an average pore size of 38 nm and a porosity of 48%. These pores function as the ion transport channels during redox flow battery operation. This separator provides excellent electrochemical performance in the mixed‐acid VRB system. The VRB using this separator delivers impressive energy efficiency, rate capability, and temperature tolerance. In additon, the flow cell using the novel separator also demonstrates an exceptional capacity retention capability over extended cycling, thus offering excellent stability for long‐term operation. The characteristics of low cost, excellent electrochemical performance and proven chemical stability afford the PTFE/silica nanoporous separator great potential as a substitute for the Nafion membrane used in VRB applications.  相似文献   
2.
3.
Large-scale separation of magnetic bioaffinity adsorbents   总被引:1,自引:0,他引:1  
Flat magnetic separator was used to separate magnetic bioaffinity adsorbents from litre volumes of suspensions. Both magnetic cross-linked erythrocytes and magnetic chitosan were efficiently separated; at least 95% adsorbent recovery was achieved at maximum flow rate (1680 ml min–1). Using this system low amounts of trypsin were concentrated from large sample volumes using magnetic erythrocytes as affinity adsorbent.  相似文献   
4.
With the emergence of stretchable electronic devices, there is growing interest in the development of deformable power accessories that can power them. To date, various approaches have been reported for replacing rigid components of typical batteries with elastic materials. Little attention, however, has been paid to stretchable separator membranes that can not only prevent internal short circuit but also provide an ionic conducting pathway between electrodes under extreme physical deformation. Herein, a poly(styrene‐b‐butadiene‐b‐styrene) (SBS) block copolymer–based stretchable separator membrane is fabricated by the nonsolvent‐induced phase separation (NIPS). The diversity of mechanical properties and porous structures can be obtained by using different polymer concentrations and tuning the affinity among major components of NIPS. The stretchable separator membrane exhibits a high stretchability of around 270% strain and porous structure having porosity of 61%. Thus, its potential application as a stretchable separator membrane for deformable energy devices is demonstrated by applying to organic/aqueous electrolyte–based rechargeable lithium‐ion batteries. As a result, these batteries manifest good cycle life and stable capacity retention even under a stretching condition of 100%, without compromising the battery's performance.  相似文献   
5.
Fast developments and substantial achievements have been shaping the field of wearable electronic devices, resulting in the persistent requirement for stretchable lithium‐ion batteries (LIBs). Despite recent progress in stretchable electrodes, stretching full batteries, including electrodes, separator, and sealing material, remains a great challenge. Here, a simple design concept for stretchable LIBs via a wavy structure at the full battery device scale is reported. All components including the package are capable of being reversibly stretched by folding the entire pouch cell into a wavy shape with polydimethylsiloxane filled in each valley region. In addition, the stretchable, sticky, and porous polyurethane/poly(vinylidene fluoride) membrane is adopted as a separator for the first time, which can maintain intimate contact between electrodes and separator to continuously secure ion pathway under dynamic state. Commercial cathode, anode, and package can be utilized in this rationally designed wavy battery to enable stretchability. The results indicate good electrochemical performances and long‐term stability at repeatable release–stretch cycles. A high areal capacity of 3.6 mA h cm?2 and energy density of up to 172 W h L?1 can be achieved for the wavy battery. The promising results of the cost‐effective wavy battery with high stretchability shed light on the development of stretchable energy storages.  相似文献   
6.
7.
磁性细菌胞内可以产生磁性颗粒,因此具有趋磁性,基于这种特性,利用磁分离的原理,本研究开发了一种磁性细菌分离仪,提供了一种分离磁性细菌的新方法。以氧化亚铁硫杆菌为例,使用磁性细菌分离仪进行分离,可以得到强磁菌和弱磁菌。利用透射电镜观察,强磁菌胞内磁性颗粒明显多于弱磁菌;半固体平板磁泳实验也表明强磁菌趋磁性明显强于弱磁菌。各项实验结果表明磁性细菌分离仪可以有效地分离磁性细菌,这是一种分离磁性细菌的新方法,将促进磁性细菌分离培养的研究。  相似文献   
8.
Acoustic cell retention devices have provided a practical alternative for up to 50 L/day perfusion cultures but further scale-up has been limited. A novel temperature-controlled and larger-scale acoustic separator was evaluated at up to 400 L/day for a 10(7) CHO cell/mL perfusion culture using a 100-L bioreactor that produced up to 34 g/day recombinant protein. The increased active volume of this scaled-up separator was divided into four parallel compartments for improved fluid dynamics. Operational settings of the acoustic separator were optimized and the limits of robust operations explored. The performance was not influenced over wide ranges of duty cycle stop and run times. The maximum performance of 96% separation efficiency at 200 L/day was obtained by setting the separator temperature to 35.1 degrees C, the recirculation rate to three times the harvest rate, and the power to 90 W. While there was no detectable effect on culture viability, viable cells were selectively retained, especially at 50 L/day, where there was a 5-fold higher nonviable washout efficiency. Overall, the new temperature-controlled and scaled-up separator design performed reliably in a way similar to smaller-scale acoustic separators. These results provide strong support for the feasibility of much greater scale-up of acoustic separations.  相似文献   
9.
Lithium–sulfur battery (LSB) possesses high theoretical energy density, but its poor cycling stability and safety issues significantly restrict progress in practical applications. Herein, a low-cost and simple Al(OH)3-based modification of commercial separator, which renders the battery outstanding fire-retardant and stable cycling, is reported. The modification is carried out by a simple blade coating of an ultrathin composite layer, mainly consisting of Al(OH)3 nanoparticles and conductive carbon, on the cathode side of the separator. The Al(OH)3 shows strong chemical absorption ability toward Lewis-based polysulfides and outstanding fire retardance through a self-decomposition mechanism under high heat, while the conductive carbon material acts as a top current collector to prevent dead polysulfide. LSB using the Al(OH)3-modified separator shows an extremely low average capacity decade per cycle during 1000 cycles at 2 C (0.029%, 1 C = 1600 mA g−1). The pouch cell exhibiting high energy density (426 Wh kg−1) can also steadily cycle for more than 100 cycles with high capacity retention (70.2% at 0.1 C). The effectiveness and accessibility of this Al(OH)3 modification strategy will hasten the practical application progress of LSBs.  相似文献   
10.
Lithium‐sulfur (Li‐S) batteries are considered to be one of the promising next‐generation energy storage systems. Considerable progress has been achieved in sulfur composite cathodes, but high cycling stability and discharging capacity at the expense of volumetric capacity have offset their advantages. Herein, a functional separator is presented by coating cobalt‐embedded nitrogen‐doped porous carbon nanosheets and graphene on one surface of a commercial polypropylene separator. The coating layer not only suppresses the polysulfide shuttle effect through chemical affinity, but also functions as an electrocatalyst to propel catalytic conversion of intercepted polysulfides. The slurry‐bladed carbon nanotubes/sulfur cathode with 90 wt% sulfur deliver high reversible capacity of 1103 mA h g?1 and volumetric capacity of 1062 mA h cm?3 at 0.2 C, and the freestanding carbon nanofibers/sulfur cathode provides a high discharging capacity of 1190 mA h g?1 and volumetric capacity of 1136 mA h cm?3 at high sulfur content of 78 wt% and sulfur loading of 10.5 mg cm?2. The electrochemical performance is comparable with or even superior to those in the state‐of‐the‐art carbon‐based sulfur cathodes. The separator reported in this work holds great promise for the development of high‐energy‐density Li‐S batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号