首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   7篇
  国内免费   4篇
  79篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   4篇
  2011年   7篇
  2010年   1篇
  2008年   6篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1990年   2篇
  1986年   1篇
  1985年   2篇
  1980年   1篇
排序方式: 共有79条查询结果,搜索用时 0 毫秒
1.
It is well established that normal patterns of epithelial cell proliferation and metabolism, and of fiber cell differentiation and maturation are essential for the maintenance of transparency in the ocular lens. Several factors, including exposure to high levels of sugars, have been known to result in the compromise of lens transparency. For example, initiation of lens cell damage by galactose induces lens epithelial cells to proliferate. Elevated levels of c-myc mRNA have usually been correlated with rapid cell growth and increased entry of cells into the S phase. Therefore, changes in c-myc mRNA levels may provide an early indication of the stimulation of lens epithelial cells to proliferate and differentiate, which has been postulated to be an early and important event in response to lens cell injury by galactose. By Northern blot hybridization analysis we quantitated c-myc mRNA levels in the lens capsule epithelia of rats (1) exposed to galactose, and (2) undergoing a partial recovery from the galactose-induced cell damage. At the onset of lens cell damage, we find c-myc mRNA to elevate to 6-fold by 24 hr, and by 48 hr decreases to about 3-fold the normal levels. During recovery, c-myc mRNA continues to be expressed at high levels approaching a 10-fold increase by day 12, then decreasing to levels of about 8-fold the control by day 30. The 24 h transitory elevation in c-myc mRNA in lens epithelial cells is in accord with our previous observations on the 24 h increase in MP26, crystallin and aldose reductase mRNAs following a high influx of galactose. Therefore, the elevation in c-myc mRNA as well suggest that galactose appears to cause lens cells to undergo an early transitory period of gene induction following the exposure of lens cells to galactose.  相似文献   
2.
Abstract: In this study, we immunohistochemically examined the several constituents of senile plaques (SPs) and cerebral amyloid angiopathy (CAA) in aged cynomolgus monkeys. Apolipoprotein E (apoE) deposited in all mature plaques and CAA, and in half of the diffuse plaques. Alpha-1-antichymotripsin (αACT) deposited in half of the mature plaques and in one third of the CAA. Amyloid precursor protein (APP), ubiquitin (Ub), and microtubule-associated protein-2 (MAP-2) accumulated in the swollen neurites of mature plaques. Glial fibrillary acidic protein (GFAP) was detected in the astrocytes and their processes surrounding the mature plaques. Tau was detected in neither the SPs nor CAA. Therefore, mature plaques involved extracellular Aβ, apoE, and αACT, and also astrocytes and swollen neurites. However, diffuse plaques involved only extracellular Aβ and apoE. Since these features, except for tau, were consistent with those in humans, this animal model will be useful for studying the pathogenesis of cerebral amyloid deposition.  相似文献   
3.
An improved methenamine-silver impregnation method is presented which exhibits sensitivity for amyloid substances comparable to that of anti-β protein immunostaining. In optimally treated sections, this technique stained both β-amyloid deposits and neurofibrillary tangles, which are known to have a β-pleated structure. This simple procedure allows a large number of sections to be stained for routine examination.  相似文献   
4.
老年性阴道炎是女性绝经后的常见病、多发病,西医认为该病的病因为绝经后或长期闭经后雌激素水平降低,阴道微生态失衡。宏基因组学是近年出现的菌群整体性检测方法,采用宏基因组学技术检测老年性阴道的微观整体状况,将为本病中医证型及疗效评定提供客观精确的量化标准。  相似文献   
5.
6.
Autophagy is a preserved cytoplasmic self-degradation process and endorses recycling of intracellular constituents into bioenergetics for the controlling of cellular homeostasis. Functional autophagy process is essential in eliminating cytoplasmic waste components and helps in the recycling of some of its constituents. Studies have revealed that neurodegenerative disorders may be caused by mutations in autophagy-related genes and alterations of autophagic flux. Alzheimer’s disease (AD) is an irrevocable deleterious neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles (NFTs) in the hippocampus and cortex. In the central nervous system of healthy people, there is no accretion of amyloid β (Aβ) peptides due to the balance between generation and degradation of Aβ. However, for AD patients, the generation of Aβ peptides is higher than lysis that causes accretion of Aβ. Likewise, the maturation of autophagolysosomes and inhibition of their retrograde transport creates favorable conditions for Aβ accumulation. Furthermore, increasing mammalian target of rapamycin (mTOR) signaling raises tau levels as well as phosphorylation. Alteration of mTOR activity occurs in the early stage of AD. In addition, copious evidence links autophagic/lysosomal dysfunction in AD. Compromised mitophagy is also accountable for dysfunctional mitochondria that raises Alzheimer’s pathology. Therefore, autophagic dysfunction might lead to the deposit of atypical proteins in the AD brain and manipulation of autophagy could be considered as an emerging therapeutic target. This review highlights the critical linkage of autophagy in the pathogenesis of AD, and avows a new insight to search for therapeutic target for blocking Alzheimer’s pathogenesis.  相似文献   
7.
Deamidation is a prevalent modification of crystallin proteins in the vertebrate lens. The effect of specific sites of deamidation on crystallin stability in vivo is not known. Using mass spectrometry, a previously unreported deamidation in beta B1-crystallin was identified at Gln146. Another deamidation was investigated at Asn157. It was determined that whole soluble beta B1 contained 13%-17% deamidation at Gln146 and Asn157. Static and quasi-elastic laser light scattering, circular dichroism, and heat aggregation studies were used to explore the structure and associative properties of recombinantly expressed wild-type (wt) beta B1 and the deamidated beta B1 mutants, Q146E and N157D. Dimer formation occurred for wt beta B1, Q146E, and N157D in a concentration-dependent manner, but only Q146E showed formation of higher ordered oligomers at the concentrations studied. Deamidation at Gln146, but not Asn157, led to an increased tendency of beta B1 to aggregate upon heating. We conclude that deamidation creates unique effects depending upon where the deamidation is introduced in the crystallin structure.  相似文献   
8.
Oxidative damage increases with age in a canine model of human brain aging   总被引:12,自引:0,他引:12  
We assayed levels of lipid peroxidation, protein carbonyl formation, glutamine synthetase (GS) activity and both oxidized and reduced glutathione to study the link between oxidative damage, aging and beta-amyloid (Abeta) in the canine brain. The aged canine brain, a model of human brain aging, naturally develops extensive diffuse deposits of human-type Abeta. Abeta was measured in immunostained prefrontal cortex from 19 beagle dogs (4-15 years). Increased malondialdehyde (MDA), which indicates increased lipid peroxidation, was observed in the prefrontal cortex and serum but not in cerebrospinal fluid (CSF). Oxidative damage to proteins (carbonyl formation) also increased in brain. An age-dependent decline in GS activity, an enzyme vulnerable to oxidative damage, and in the level of glutathione (GSH) was observed in the prefrontal cortex. MDA level in serum correlated with MDA accumulation in the prefrontal cortex. Although 11/19 animals exhibited Abeta, the extent of deposition did not correlate with any of the oxidative damage measures, suggesting that each form of neuropathology accumulates in parallel with age. This evidence of widespread oxidative damage and Abeta deposition is further justification for using the canine model for studying human brain aging and neurodegenerative diseases.  相似文献   
9.
The authors prepared water-soluble (WSF), urea-soluble (USF), alkali-soluble (ASF), sonicated (SF), sonicated insoluble (SIF) and membrane (MF) fractions of lens proteins from human senile and diabetic cataractous lenses and age-matched clear lenses. Levels of advanced glycation end products (AGEs) including carboxymethyl lysine (CML), a glycoxidation product, were determined by both non-competitive and competitive enzyme-linked immunosorbent assay (ELISA). Distribution of AGEs in the various protein fractions was ascertained by SDS-PAGE and Western blotting. An overall increase in the levels of AGEs in diabetic cataractous lenses as compared to senile cataractous lenses and clear lenses has been observed. ASF and SF , both of which originated from the urea-insoluble fraction, showed the highest levels of AGEs. However, no clear-cut differences in CML levels were seen among clear lenses and senile and diabetic cataractous lenses. AGEs were found to be distributed mostly in the high molecular aggregates in all the fractions. These data suggest that AGEs contribute to protein aggregation and subsequent insolubilization.  相似文献   
10.
目的:本研究以模式小鼠C57BL为对象,研究小鼠在衰老过程中不同组织器官内源性亚精胺含量的变化。方法:利用高效液相色谱检测小鼠心脏和肝脏组织中亚精胺含量,进一步应用qRT-PCR以及Western blot检测在衰老过程中,不同组织器官中亚精胺生物合成途径的关键基因表达变化,利用亚精胺处理细胞检测DNA损伤应答能力。结果:随着衰老的发生心脏(199.09±17.12)和肝脏组织(168.92±5.12)中亚精胺含量显著降低,分别为78.01±13.52、62.05±6.73,差异有统计学意义(P0.05);不同组织器官中亚精胺生物合成途径的关键基因Odc、Srm、Amd1的表达随衰老的发生明显下调,并且伴随着DNA损伤应答障碍;利用亚精胺处理细胞,能够增强细胞对DNA损伤的应答反应。结论:衰老的小鼠中内源性亚精胺含量降低,并且其合成途径的关键基因转录水平降低,导致细胞对DNA损伤应答能力减弱,从而加速机体衰老进程。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号