首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   3篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2014年   1篇
  2012年   1篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1982年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
The boreal forest is one of the North America’s most important breeding areas for ducks, but information about the nesting ecology of ducks in the region is limited. We collected microhabitat data related to vegetation structure and composition at 157 duck nests and paired random locations in Alberta’s boreal forest region from 2016 to 2018. We identified fine‐scale vegetation features selected by ducks for all nests, between nesting guilds, and among five species using conditional logistic regression. Ducks in the boreal forest selected nest sites with greater overhead and graminoid cover, but less forb cover than random sites. Characteristics of the nest sites of upland‐ and overwater‐nesting guilds differed, with species nesting in upland habitat selecting nests that provided greater shrub cover and less lateral concealment and species nesting over water selecting nests with less shrub cover. We examined the characteristics of nest sites of American Wigeon (Mareca americana), Blue‐winged Teal (Spatula discors), Green‐winged Teal (Anas crecca), Mallards (Anas platyrhynchos), and Ring‐necked Ducks (Aythya collaris), and found differences among species that may facilitate species coexistence at a regional scale. Our results suggest that females of species nesting in upland habitat selected nest sites that optimized concealment from aerial predators while also allowing detection of and escape from terrestrial predators. Consequently, alteration in the composition and heterogeneity of vegetation and predator communities caused by climate change and industrial development in the boreal forest of Canada may affect the nest‐site selection strategies of boreal ducks.  相似文献   
2.
3.
We model the optimal foraging strategies for 2 nectarivore species,differing in the length of their proboscis, that exploit thenectar provided by 2 types of flowers, differing in the depthsof their corollas. When like flowers appear in clumps, nectarivoresmust decide whether to forage at a patch of deep or shallowflowers. If nectarivores forage optimally, at least one flowertype will be used by a single nectarivore species. Long-tonguedforagers will normally visit deep flowers and short-tonguedforagers shallow flowers, although extreme asymmetries in metaboliccosts may lead to the opposite arrangement. When deep and shallowflowers are randomly interspersed, nectarivores must decide,on encounter with a flower, whether to collect its nectar orcontinue searching. At low nectarivore densities, the optimalstrategy involves exploiting every encountered flower; however,as nectarivore densities increase and resources become scarce,long-tongued individuals should start concentrating on deepflowers and short-tongued individuals on shallow flowers. Therefore,regardless of the spatial distribution of flowers, corolla depthcan determine which nectarivore species exploit the nectar fromeach flower type in a given community. It follows that corollaelongation can evolve as a means to keep nectar thieves at bayif short-tongued visitors are less efficient pollinators thanlong-tongued visitors.  相似文献   
4.
Much interest lies in the identification of manageable habitat variables that affect key vital rates for species of concern. For ground‐nesting birds, vegetation surrounding the nest may play an important role in mediating nest success by providing concealment from predators. Height of grasses surrounding the nest is thought to be a driver of nest survival in greater sage‐grouse (Centrocercus urophasianus; sage‐grouse), a species that has experienced widespread population declines throughout their range. However, a growing body of the literature has found that widely used field methods can produce misleading inference on the relationship between grass height and nest success. Specifically, it has been demonstrated that measuring concealment following nest fate (failure or hatch) introduces a temporal bias whereby successful nests are measured later in the season, on average, than failed nests. This sampling bias can produce inference suggesting a positive effect of grass height on nest survival, though the relationship arises due to the confounding effect of plant phenology, not an effect on predation risk. To test the generality of this finding for sage‐grouse, we reanalyzed existing datasets comprising >800 sage‐grouse nests from three independent studies across the range where there was a positive relationship found between grass height and nest survival, including two using methods now known to be biased. Correcting for phenology produced equivocal relationships between grass height and sage‐grouse nest survival. Viewed in total, evidence for a ubiquitous biological effect of grass height on sage‐grouse nest success across time and space is lacking. In light of these findings, a reevaluation of land management guidelines emphasizing specific grass height targets to promote nest success may be merited.  相似文献   
5.
Mistletoes are preferred nesting sites for many bird species in a range of habitats. However, no studies have examined the use of mistletoes by nesting birds in the semi‐arid savannah. We studied nesting in mistletoe and its role in determining nesting success in the Grey Go‐away‐bird in south‐west Zimbabwe. We modelled the effects of mistletoe, mistletoe abundance, nest microclimate, concealment and nest height on daily survival rates (DSR) using program MARK. A constant survival model was best fitted for the Grey Go‐away‐bird suggesting a constant nest survival rate across the nesting period. Mistletoe nests had lower DSR than nests placed elsewhere in the canopy. Mistletoe abundance and nest height had a positive association with DSR whereas visibility distance, microclimate and concealment were negatively associated with DSR. Overall, survival for nests in mistletoe was 22.1% compared with 90.5% for nests in other substrates over the 50‐day nesting period. In conclusion, the low nest survival in mistletoe suggests either that the factors used to select mistletoe as nest sites by these birds are poor predictors of nest success or that nesting in mistletoe may be maladaptive.  相似文献   
6.
ABSTRACT Nest‐site selection and nest defense are strategies for reducing the costs of brood parasitism and nest predation, two selective forces that can influence avian nesting success and fitness. During 2001–2002, we analyzed the effect of nest‐site characteristics, nesting pattern, and parental activity on nest predation and brood parasitism by cowbirds (Molothrus spp.) in a population of Brown‐and‐yellow Marshbirds (Pseudoleistes virescens) in the Buenos Aires province, Argentina. We examined the possible effects of nest detectability, nest accessibility, and nest defense on rates of parasitism and nest predation. We also compared rates of parasitism and nest predation and nest survival time of marshbird nests during the egg stage (active nests) with those of the same nests artificially baited with passerine eggs after young fledged or nests failed (experimental nests). Most nests (45 of 48, or 94%) found during the building or laying stages were parasitized, and 79% suffered at least one egg‐predation event. Cowbirds were responsible for most egg predation, with 82 of 107 (77%) egg‐predation events corresponding to eggs punctured by cowbirds. Nests built in thistles had higher rates of parasitism and egg predation than nests in other plant, probably because cowbirds were most active in the area where thistles were almost the only available nesting substrate. Parasitism rates also tended to increase as the distance to conspecific nests increased, possibly due to cooperative mobbing and parental defense by marshbirds. The proportion of nests discovered by cowbirds was higher for active (95%) than for experimental (29%) nests, suggesting that cowbirds used host parental activity to locate nests. Despite active nest defense, parental activity did not affect either predation rates or nest‐survival time. Thus, although nest defense by Brown‐and‐yellow Marshbirds appears to be based on cooperative group defense, such behavior did not reduce the impact of brood parasites and predators.  相似文献   
7.
Evaluating relationships between ecological processes that occur concurrently is complicated by the potential for such processes to covary. Ground‐nesting birds rely on habitat characteristics that provide visual and olfactory concealment from predators; this protection often is provided by vegetation at the nest site. Recently, researchers have raised concern that measuring vegetation characteristics at nest fate (success or failure) introduces a bias, as vegetation at successful nests is measured later in the growing season (and has more time to grow) compared with failed nests. In some systems, this bias can lead to an erroneous conclusion that plant height is positively associated with nest survival. However, if the features that provide concealment are invariant during the incubation period, no bias should be expected, and the timing of measurement is less influential. We used data collected from 98 nests to evaluate whether there is evidence that such a bias exists in a study of wild turkey (Meleagris gallopavo) nesting in a montane forest ecosystem. We modeled nest survival as a function of visual obstruction and other covariates of interest. At unsuccessful nests, we collected visual obstruction readings at both the date of nest failure and the projected hatch date and compared survival estimates generated using both sets of vegetation data. In contrast to studies in grassland and shrubland systems, we found little evidence that the timing of vegetation sampling influenced conclusions regarding the association between visual obstruction and nest survival; model selection and estimates of nest survival were similar regardless of when vegetation data were collected. The dominant hiding cover at most of our nests was provided by evergreen shrubs; retention of leaves and slow growth of these plants likely prevent appreciable changes in visual obstruction during the incubation period. When considered in aggregate with a growing body of literature, our results suggest that the influence of timing of vegetation sampling depends on the study system. When designing future studies, investigators should carefully consider the type of structures that provide nest concealment and whether plant phenology is confounded with nest survival.  相似文献   
8.
Selection bias is most common in observational studies, when patients select their own treatments or treatments are assigned based on patient characteristics, such as disease severity. This first-order selection bias, as we call it, is eliminated by randomization, but there is residual selection bias that may occur even in randomized trials which occurs when, subconsciously or otherwise, an investigator uses advance knowledge of upcoming treatment allocations as the basis for deciding whom to enroll. For example, patients more likely to respond may be preferentially enrolled when the active treatment is due to be allocated, and patients less likely to respond may be enrolled when the control group is due to be allocated. If the upcoming allocations can be observed in their entirety, then we will call the resulting selection bias second-order selection bias. Allocation concealment minimizes the ability to observe upcoming allocations, yet upcoming allocations may still be predicted (imperfectly), or even determined with certainty, if at least some of the previous allocations are known, and if restrictions (such as randomized blocks) were placed on the randomization. This mechanism, based on prediction but not observation of upcoming allocations, is the third-order selection bias that is controlled by perfectly successful masking, but without perfect masking is not controlled even by the combination of advance randomization and allocation concealment. Our purpose is to quantify the magnitude of baseline imbalance that can result from third-order selection bias when the randomized block procedure is used. The smaller the block sizes, the more accurately one can predict future treatment assignments in the same block as known previous assignments, so this magnitude will depend on the block size, as well as on the level of certainty about upcoming allocations required to bias the patient selection. We find that a binary covariate can, on average, be up to 50% unbalanced by third-order selection bias.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号