首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  国内免费   1篇
  2018年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2006年   1篇
  2005年   2篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Coenzyme Q (CoQ0) and other quinones were shown to be potent insulin secretagogues in the isolated pancreatic islet. The order of potency was CoQ0benzoquinonehydroquinonemenadione. CoQ6 and CoQ10 (ubiquinone), duroquinone and durohydroquinone did not stimulate insulin release. CoQ0's insulinotropism was enhanced in calcium-free medium and CoQ0 appeared to stimulate only the second phase of insulin release. CoQ0 inhibited inositol mono-, bis- and trisphosphate formation. Inhibitors of mitochondrial respiration (rotenone, antimycin A, FCCP and cyanide) and the calcium channel blocker verapamil, did not inhibit CoQ0-induced insulin release. Dicumarol, an inhibitor of quinone reductase, did not inhibit CoQ0-induced insulin release, but it did inhibit glucose-induced insulin release suggesting that the enzyme and quinones play a role in glucose-induced insulin release. Quinones may stimulate insulin release by mimicking physiologically-occuring quinones, such as CoQ10, by acting on the plasma membrane or in the cytosol. Exogenous quinones may bypass the quinone reductase reaction, as well as many reactions important for exocytosis.  相似文献   
2.
Summary The purpose of this investigation was to provide evidence for the secretion of high molecular weight mucins, CTM-A and CTM-B, in primary culture of canine tracheal epithelial (CTE) cells. The cells were isolated from tracheas of mongrel dogs by pronase treatment. Primary cultures of the epithelial cells were established using ICN cellagen inserts in Dulbecco’s modified Eagle’s/F12 medium supplemented with growth factors and could be maintained for up to 23 days. The evidence for the mucin secretion in culture medium and their localization in the cells was established by a) positive immunocytochemical staining using specific antibodies developed against purified native as well as deglycosylated CTM-A and CTM-B; b) incorporation of labeled amino acids, followed by electrophoresis and autoradiography detection of glycoconjugates purified from the culture medium; c) comparison of the amino acid compositions of mucin purified from canine tracheal pouch secretions and that purified from the culture medium; and d) Western blot analyses using specific polyclonal antibodies directed against deglycosylated CTM-A and CTM-B. Immunoaffinity purified secreted labeled glycoconjugates were resistant to hyaluronidase treatment. The effects of cyclic AMP (1 × 10−5 M), dibutyryl cyclic AMP (1 × 10−5 M), 8-bromocyclic AMP (1 × 10−5 M), and prostaglandin E1 (1 × 10−6 M) on mucin secretion by CTE cells were also investigated. Secretion of mucins by CTE cells in culture was considerably more enhanced by 8-bromocyclic AMP than that observed for other secretagogues used in this study.  相似文献   
3.
Summary Methods have been developed for isolating and maintaining differentiated rat exorbital lacrimal, parotid, and pancreatic acinar cells for up to 1 month in culture. The dissociated cells retained their differentiated morphology when cultured as suspension cultures at 35°C with the appropriate secretagogue (exorbital lacrimal, 10−6 M carbamyl choline; pancreas 10−5 M carbamyl choline; parotid, 10−6 M isoproterenol). Under these conditions the cells remained viable and differentiated for up to 4 weeks in culture and continued to incorporate3H-leucine at rates similar to those of freshly isolated cells. If secretagogue was omitted from the medium, the cells rapidly degenerated. These results indicate that differentiated from the medium, the cells rapidly degenerated. These results indicate that differentiated exocrine gland acinar cells may be maintained in vitro and utilized as a model system for the study of secretory processes.  相似文献   
4.
Hyperglycemia during hyper-CVAD chemotherapy is associated with poor outcomes of acute lymphoblastic leukemia (ALL) (Cancer 2004; 100:1179–85). The optimal clinical strategy to manage hyperglycemia during hyper-CVAD is unclear. To examine whether anti-diabetic pharmacotherapy can influence chemosensitivity of ALL cells, we examined the impacts of different anti-diabetic agents on ALL cell lines and patient samples. Pharmacologically achievable concentrations of insulin, aspart and glargine significantly increased the number of ALL cells, and aspart and glargine did so at lower concentrations than human insulin. In contrast, metformin and rosiglitazone significantly decreased the cell number. Human insulin and analogs activated AKT/mTOR signaling and stimulated ALL cell proliferation (as measured by flow cytometric methods), but metformin and rosiglitazone blocked AKT/mTOR signaling and inhibited proliferation. Metformin 500 μM and rosiglitazone 10 μM were found to sensitize Reh cells to daunorubicin, while aspart, glargine and human insulin (all at 1.25 mIU/L) enhanced chemoresistance. Metformin and rosiglitazone enhanced daunorubicin-induced apoptosis, while insulin, aspart and glargine antagonized daunorubicin-induced apoptosis. In addition, metformin increased etoposide-induced and L-asparaginase-induced apoptosis; rosiglitazone increased etoposide-induced and vincristine-induced apoptosis. In conclusion, our results suggest that use of insulins to control hyperglycemia in ALL patients may contribute to anthracycline chemoresistance, while metformin and thiazolidinediones may improve chemosensitivity to anthracycline as well as other chemotherapy drugs through their different impacts on AKT/mTOR signaling in leukemic cells. Our data suggest that the choice of anti-diabetic pharmacotherapy during chemotherapy may influence clinical outcomes in ALL.  相似文献   
5.
Chemorepellents in Paramecium and Tetrahymena   总被引:1,自引:1,他引:0  
Although Paramecium has been widely used as a model sensory cell to study the cellular responses to thermal, mechanical and chemoattractant stimuli, little is known about their responses to chemorepellents. We have used a convenient capillary tube repellent bioassay to describe 4 different compounds that are chemorepellents for Paramecium and compared their response with those of Tetrahymena. The classical Paramecium t-maze chemokinesis test was also used to verify that this is a reliable chemorepellent assay. The first two compounds, GTP and the oxidant NBT, are known to be depolarizing chemorepellents in Paramecium but this is the first report of them as repellents in Tetrahymena. The second two compounds, the secretagogue alcian blue and the dye cibacron blue, have not previously been described as chemorepellents in either of these ciliates. Two other compounds, the secretagogue AED and the oxidant cytochrome c, were found to be repellents to Paramecium but not to Tetrahymena. The repellent nature of each of these compounds is not related to toxicity because cells are completely viable in all of them. More importantly, all of these repellents are effective at micromolar to nanomolar concentrations, providing an opportunity to use them as excitatory ligands in future works concerning their membrane receptors and possible receptor operated ion channels.  相似文献   
6.
生长激素分泌促进剂及构效关系研究进展   总被引:1,自引:0,他引:1  
生长激素分泌促进剂是一类作用于垂体和下丘脑的具有专一性促生长激素释放作用的寡肽及其类似物.由于其分子质量小、活性高、可口服、作用专一而有可能成为新的生长激素治疗药物.目前已经发展了很多具有此类活性的多种结构的化合物,如肽、环肽、肽醇及非肽类似物等.尽管这类化合物的作用机制尚未完全明确,但已有证据表明存在新的调节生长激素分泌的途径和新的调节因子.  相似文献   
7.
The lining of the trachea consists of a pseudostratified, mucociliary epithelium that under a variety of conditions, such as vitamin A deficiency, toxic and mechanical injury, becomes a stratified squamous epithelium. Several in vitro cell culture models have been established to study the process of differentiation of airway epithelium. Such studies have indicated that mucosecretory differentiation of tracheal epithelial cells can be modulated by substratum. This study was undertaken to understand molecular mechanisms of squamous differentiation in tracheal epithelia. Primary cultured tracheal cells grown on uncoated filters were differentiated to single layer of squamous cells, whereas cells were grown as stratified columnar cells on collagen-I coated filters. The responses to secretagogues were altered according to culture conditions. DD-PCR revealed that FAK and a WD protein expression was increased in squamous tracheal epithelia. Expression of a WD protein was changed by the treatment of retinoic acid in various epithelial cells. These results indicated that squamous differentiation of tracheal cells changes the expression of a variety of genes, and that the experimental model for this study can be employed to study molecular mechanisms of squamous differentiation in airway epithelial cells.  相似文献   
8.
Ghrelin was originally purified and characterized in rats and humans as the first identified endogenous ligand of the growth hormone secretagogue receptor. In mammals, ghrelin is mainly produced in the stomach, with minor levels of ghrelin present in the brain and various other tissues. Ghrelin is involved in the regulation of many physiological functions including the regulation of growth hormone secretion and food intake in mammals. The gene and peptide structures of ghrelin have been recently identified in several fish species. As in mammals, ghrelin mRNA is mainly expressed in the gut of fish. Ghrelin is involved in the regulation of a number of physiological functions, including the regulation of pituitary hormone release and the stimulation of food intake in fish. In this review, we wish to provide an up-to-date discussion on the structure, distribution and functions of ghrelin in fish, in comparison to ghrelin in other vertebrates.  相似文献   
9.
Chronic systemic treatment given to adult male rats with growth hormone releasing peptide-6, an agonist of the ghrelin receptor, increases insulin-like growth factor I levels in various brain regions, including the hypothalamus and cerebellum. Furthermore, intracellular signalling cascades normally associated with anti-apoptotic actions are activated in the same areas and are coincident with decreased basal cell death. Because abnormally high concentrations of glutamate can lead to overexcitation of neurones leading to cell damage and/or death, we investigated whether administration of growth hormone releasing peptide-6 attenuates monosodium glutamate-induced apoptosis in the rat hypothalamus and cerebellum. Glutamate increased activation of caspase 9 followed by cleavage of caspase 7, which in turn fragmented poly(ADP-ribose) polymerase, terminating in cell death in both the hypothalamus and cerebellum. Growth hormone releasing peptide-6 reversed glutamate-induced cell death by decreasing activation of caspases 9 and 7 and poly(ADP-ribose) polymerase fragmentation. These results provide a better understanding of the neuroprotective role of growth hormone secretagogues and the mechanisms involved.  相似文献   
10.
Summary A human intestinal epithelial cell line (Intestine 407) is known to retain receptors for intestinal secretagogues such as acetylcholine (ACh), histamine, serotonin (5-HT) and vasoactive intestinal peptide (VIP). The cells were also found to possess separate receptors for secretin and ATP, the stimulation of which elicited transient hyperpolarizations coupled to decreased membrane resistances. These responses were reversed in polarity at the K+ equilibrium potential. The hyperpolarizing responses to six agonists were reversibly inhibited by quinine or quinidine. By means of Ca2+-selective microelectrodes, increases in the cytosolic free Ca2+ concentration were observed in response to individual secretagogues. The time course of Ca2+ responses coincided with that of hyperpolarizing responses. The responses to ACh and 5-HT were abolished by a reduction in the extracellular Ca2+ concentration down to pCa 7 or by application of Co2+. Thus, in Intestine 407 cells, not only the intestinal secretagogues, which are believed to act via increased cytosolic Ca2+ (ACh, 5-HT and histamine), but also those which elevate cyclic AMP (VIP, secretin and ATP) induce increases in cytosolic Ca2+, thereby activating the K+ conductance. It is likely that the origin of increased cytosolic Ca2+ is mainly extracellular for ACh- and 5-HT-induced responses, whereas histamine, VIP, secretin and ATP mobilize Ca2+ from the internal compartment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号