首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  2022年   1篇
  2018年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
The structure of a second new lignan diester from Salvia plebeia seed has been determined. Hydrolysis of this diester yields two compounds, 12-methyltetradecanoic acid and secoisolariciresinol.  相似文献   
2.
3.
The effect of 10% flax chow consumption from the 30th to the 130th day after birth was examined in male Fischer 344 rats. The effects of both the high lignan/high oil Norlin strain and a high lignan/low oil Solin strain of flaxseed were compared. Physically and behaviourally there were no differences in rats belonging to the three dietary groups at any time. At 50 and 100 days of dietary exposure, blood glucose levels were the same in Norlin and Solin flax chow-fed and as well as regular chow-fed rats; there were no signs of toxicity in the Norlin and Solin flax-fed rats since their plasma levels of alanine aminotransferase were the same and equal to those of regular chow-fed rats. The activity of gamma-glutamyltranspeptidase (gammaGT) displayed an increase in the liver homogenates of flax chow-fed rats. This increase was the same in Norlin and Solin flax-fed rats at 50 and 100 days. Thus the liver effect was not oil, but lignan, likely secoisolariciresinol diglucoside (SDG), induced and was effected early on, and sustained, after flax exposure. The degree of heat activation of liver homogenate gammaGT was the same in regular chow-fed and flax chow-fed rats. Compared to liver homogenate gammaGT activity, the soluble form of gammaGT was expressed at very low levels while the plasma membrane-bound form of gammaGT was expressed at very high levels in rat liver in both regular chow-fed and flax chow-fed rats. There was no effect of flax feeding on the soluble form of liver gammaGT which was expressed at a very low level. Flax feeding effected an increase in the activity of gammaGT in isolated plasma membrane fractions which mirrored that in liver homogenates: the same degree of increase was seen in Norlin flax chow-fed and Solin flax chow-fed rats. Flax consumption effects an increase in the activity of liver gammaGT at the level of the plasma membrane which is lignan dependent, physiologically relevant and may be linked to hepatoprotection against injury through an increase in reduced glutathione.  相似文献   
4.
Recently there has been a moderate resurgence in the use of flax-seed in a variety of ways including bread. The scientific basis of its use is very limited. There is some claim for beneficial effects in cancer and lupus nephritis. These claims could be due to its ability to scavenge oxygen radicals. However, its antioxidant activity is not known. Recently a method has been developed to isolate secoisolariciresinol diglucoside (SDG) from defatted flax-seed in large quantity (patent pending). We investigated the ability of SDG to scavenge úOH using high pressure liquid chromatography (HPLC) method. úOH was generated by photolysis of H2O2 (1.25-10.0 \sgmaelig;moles/ml) with ultraviolet light and was trapped with salicylic acid which is hydroxylated to produce úOH-adduct products 2,3-dihydroxybenzoic acid (DHBA) and 2,5-DHBA. H2O2 produced a concentration-dependent úOH as estimated by 2,3-DHBA and 2,5-DHBA. A standard curve was constructed for known concentrations of 2,3-DHBA and 2,5-DHBA against corresponding area under the peaks which then was used for measurement of 2,3-DHBA and 2,5-DHBA generated by UV irradiation of H2O2 in the presence of salicylic acid. SDG in the concentration range of 25, 50, 100, 250, 500, 750, 1000 and 2000 \sgmaelig;g/ml (36.4, 72.8, 145.6, 364.0, 728.0, 1092.0, 1456.0 and 2912.0 \sgmaelig;M respectively) produced a concentration-dependent decrease in the formation of 2,3-DHBA and 2,5-DHBA, the inhibition being 4 and 4.65% respectively with 25 \sgmaelig;g/ml (36.4 \sgmaelig;M) and 82 and 74% respectively with 2000 \sgmaelig;g/ml (2912.0 \sgmaelig;M). The decrease in úOH-adduct products was due to scavenging of úOH not and by scavenging of formed 2,3-DHBA and 2,5-DHBA. SDG prevented the lipid peroxidation of liver homogenate in a concentration-dependent manner in the concentration range from 319.3-2554.4 \sgmaelig;M. These results suggest that SDG scavenges úOH and therefore has an antioxidant activity.  相似文献   
5.
The wood of Alnus japonica has been shown to contain a number of biarylheptanoids as well as other phenolics, including secoisolariciresinol diferulate. The co-occurrence of cyclized biarylheptanoids with their corresponding acyclic biarylheptanoids has been demonstrated and this fact may have biosynthetic significance. The possible chemotaxonomic importance of biarylheptanoids in members of the Betulaceae is discussed. The isolation and identification of several steroids and triterpenoids are also described.  相似文献   
6.
Aims:  It has been investigated whether secoisolariciresinol (SECO) and anhydrosecoisolariciresinol (AHS), an acid degradation product of SECO, could be fermented in a similar way, and to a similar extent, by members of the intestinal microbiota.
Methods and Results:  AHS and SECO were demethylated by Peptostreptococcus productus , Eubacterium limosum and Clostridium methoxybenzovorans . These bacteria have been identified as members of the human intestinal flora or closely related species. Demethylated AHS and demethylated SECO were purified by preparative RP-HPLC, and subsequently subjected to fermentation with Eggerthella lenta , Clostridium scindens and Clostridium hiranonis . Eggerthella lenta efficiently dehydroxylated demethylated SECO to enterodiol, whereas the other bacteria showed no dehydroxylation activity.
Conclusions:  The conversion of the diol structure of SECO into the furan ring in AHS did not influence the demethylation capability of the tested bacteria. The results also showed that the extent of dehydroxylation of demethylated AHS was much lower than that of demethylated SECO.
Significance and Impact of the Study:  Plant lignans are converted into bioactive mammalian lignans by the human intestinal bacteria. This study showed that the modification of plant lignans resulted in the formation a new type of mammalian lignan.  相似文献   
7.
Secoisolariciresinol diglucoside (SDG) isolated from flaxseed has antioxidant activity and has been shown to prevent hypercholesterolemic atherosclerosis. An investigation was made of the effects of SDG on the development of diabetes in diabetic prone BioBreeding rats (BBdp rats), a model of human type I diabetes [insulin dependent diabetes mellitus (IDDM)] to determine if this type of diabetes is due to oxidative stress and if SDG can prevent the incidence of diabetes. The rats were divided into three groups: Group I, BioBreeding normal rats (BBn rats) (n = 10); group II, BBdp untreated (n = 11); and group III, BBdp treated with SDG 22 mg/kg body wt, orally) (n = 14). Oxidative stress was determined by measuring lipid peroxidation product malondialdehyde (MDA) an index of level of reactive oxygen species in blood and pancreas; and pancreatic chemiluminescence (Pancreatic-CL), a measure of antioxidant reserve. Incidence of diabetes was 72.7% in untreated and 21.4% in SDG-treated group as determined by glycosuria and hyperglycemia. SDG prevented the development of diabetes by approximately 71%. Development of diabetes was associated with an increase in serum and pancreatic MDA and a decrease in antioxidant reserve. Prevention in development of diabetes by SDG was associated with a decrease in serum and pancreatic-MDA and an increase in antioxidant reserve. These results suggest that IDDM is mediated through oxidative stress and that SDG prevents the development of diabetes.  相似文献   
8.
The ability of Streptomyces ipomoea laccase to polymerize secoisolariciresinol lignan and technical lignins was assessed. The reactivity of S. ipomoea laccase was also compared to that of low redox fungal laccase from Melanocarpus albomyces using low molecular mass p-coumaric, ferulic and sinapic acid as well as natural (acetosyringone) and synthetic 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) mediators as substrates. Oxygen consumption measurement, MALDI-TOF MS and SEC were used to follow the enzymatic reactions at pH 7, 8, 9 and 10 at 30 °C and 50 °C. Polymerization of lignins and lignan by S. ipomoea laccase under alkaline reaction conditions was observed, and was enhanced in the presence of acetosyringone almost to the level obtained with M. albomyces laccase without mediator. Reactivities of the enzymes towards acetosyringone and TEMPO were similar, suggesting exploitation of the compounds and low redox laccase in lignin valorization under alkaline conditions. The results have scientific impact on basic research of laccases.  相似文献   
9.
10.
The human intestinal microbiota is essential for the conversion of the dietary lignan secoisolariciresinol diglucoside (SDG) via secoisolariciresinol (SECO) to the enterolignans enterodiol (ED) and enterolactone (EL). However, knowledge of the species that catalyse the underlying reactions is scant. Therefore, we focused our attention on the identification of intestinal bacteria involved in the conversion of SDG. Strains of Bacteroides distasonis, Bacteroides fragilis, Bacteroides ovatus and Clostridium cocleatum, as well as the newly isolated strain Clostridium sp. SDG-Mt85-3Db, deglycosylated SDG. Demethylation of SECO was catalysed by strains of Butyribacterium methylotrophicum, Eubacterium callanderi, Eubacterium limosum and Peptostreptococcus productus. Dehydroxylation of SECO was catalysed by strains of Clostridium scindens and Eggerthella lenta. Finally, the newly isolated strain ED-Mt61/PYG-s6 catalysed the dehydrogenation of ED to EL. The results indicate that the activation of SDG involves phylogenetically diverse bacteria, most of which are members of the dominant human intestinal microbiota.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号