首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   30篇
  国内免费   21篇
  2024年   2篇
  2023年   4篇
  2022年   4篇
  2021年   8篇
  2020年   10篇
  2019年   12篇
  2018年   10篇
  2017年   11篇
  2016年   10篇
  2015年   14篇
  2014年   12篇
  2013年   15篇
  2012年   12篇
  2011年   10篇
  2010年   13篇
  2009年   11篇
  2008年   10篇
  2007年   17篇
  2006年   14篇
  2005年   10篇
  2004年   9篇
  2003年   15篇
  2002年   2篇
  2001年   8篇
  2000年   7篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1995年   7篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1986年   2篇
  1985年   4篇
  1983年   1篇
排序方式: 共有284条查询结果,搜索用时 15 毫秒
1.
2.
Leaf dynamics and standing stocks of intertidal seagrasses were studied in the Baie d'Aouatif (Parc National du Banc d'Arguin, Mauritania) in April and September 1988. Standing stocks of Zostera noltii Hornem. suggest a unimodal seasonal curve similar to what is found for populations at higher latitudes. Also, leaf growth rates (0.03 cm2 cm–2 day–1 on average) were similar to those found at higher latitudes in these months. Variation in leaf loss over tidal depth, time and different locations in the Baie d'Aouatif was larger and more often significant than variation in leaf growth. In general, Z. noltii beds in the Baie d'Aouatif had comparable leaf growth rates and standing stocks. In both months losses were almost always higher than or equal to growth.Variation in leaf loss over time was much higher in the plots that were situated high in the intertidal than in lower plots. This is explained by differences in susceptibility to sloughing, which is presumably higher in periods with low tide around noon for shallow depths.In an experiment using artificial shading nets, in situ leaf growth was affected negatively from 94% shading onwards. This shading was observed to reduce the light intensity reaching the seagrass bed to a level below the reported range of light compensation points for Z. noltii. Cymodocea nodosa (Ucria) Ascherson on average had higher leaf area and relative growth rates than Z. noltii and much lower loss rates, resulting in a positive net increase in September. Standing stocks were also higher than for Z. noltii. A mixed seagrass bed containing the above two species and Halodule wrightii Ascherson had the highest observed total biomass: 335 g m–2 ash-free dry weight.  相似文献   
3.
Large grazers (megaherbivores) have a profound impact on ecosystem functioning. However, how ecosystem multifunctionality is affected by changes in megaherbivore populations remains poorly understood. Understanding the total impact on ecosystem multifunctionality requires an integrative ecosystem approach, which is especially challenging to obtain in marine systems. We assessed the effects of experimentally simulated grazing intensity scenarios on ecosystem functions and multifunctionality in a tropical Caribbean seagrass ecosystem. As a model, we selected a key marine megaherbivore, the green turtle, whose ecological role is rapidly unfolding in numerous foraging areas where populations are recovering through conservation after centuries of decline, with an increase in recorded overgrazing episodes. To quantify the effects, we employed a novel integrated index of seagrass ecosystem multifunctionality based upon multiple, well-recognized measures of seagrass ecosystem functions that reflect ecosystem services. Experiments revealed that intermediate turtle grazing resulted in the highest rates of nutrient cycling and carbon storage, while sediment stabilization, decomposition rates, epifauna richness, and fish biomass are highest in the absence of turtle grazing. In contrast, intense grazing resulted in disproportionally large effects on ecosystem functions and a collapse of multifunctionality. These results imply that (i) the return of a megaherbivore can exert strong effects on coastal ecosystem functions and multifunctionality, (ii) conservation efforts that are skewed toward megaherbivores, but ignore their key drivers like predators or habitat, will likely result in overgrazing-induced loss of multifunctionality, and (iii) the multifunctionality index shows great potential as a quantitative tool to assess ecosystem performance. Considerable and rapid alterations in megaherbivore abundance (both through extinction and conservation) cause an imbalance in ecosystem functioning and substantially alter or even compromise ecosystem services that help to negate global change effects. An integrative ecosystem approach in environmental management is urgently required to protect and enhance ecosystem multifunctionality.  相似文献   
4.
Abstract The effect of increasing planting unit size and stabilizing sediment was examined for two seagrass planting methods at Carnac Island, Western Australia in 1993. The staple method (sprigs) was used to transplant Amphibolis griffithii (J. M. Black) den Hartog and the plug method was used to transplant A. griffithii and Posidonia sinuosa Cambridge and Kuo. Transplant size was varied by increasing the number of rhizomes incorporated into a staple and increasing the diameter of plugs. Planting units were transplanted into bare sand, back into the original donor seagrass bed, or into a meadow of Heterozostera tasmanica, which is an important colonizing species. Sprigs of A. griffithii were extracted from a monospecific meadow; tied into bundles of 1, 2, 5, and 10 rhizomes; and planted into unvegetated areas. Half the units were surrounded by plastic mesh and the remainder were unmeshed. All treatments were lost within 99 days after transplanting, and although larger bundles survived better than smaller ones, no significant differences could be attributed to the effects of mesh or sprig size. Plugs of P. sinuosa and A. griffithii were extracted from monospecific meadows using polyvinyl chloride pipe of three diameters, 5, 10, and 15 cm, and planted into unvegetated areas nearby. Half the units were surrounded by plastic mesh and the remainder were unmeshed. Posidonia sinuosa plugs were also placed within a meadow of H. tasmanica (Martens ex Aschers.) den Hartog. Only 60% of A. griffithii plug sizes survived 350 days after transplanting back into the donor bed; however, survival of transplants at unvegetated areas varied considerably, and analysis of variance indicated a significant two‐way interaction between treatment and plug size. Transplants survived better when meshed (90% survived) and survival improved with increasing plug size. Posidonia sinuosa transplants survived poorly (no plugs survived beyond 220 days in bare or meshed treatments) regardless of size. Survival of 10‐ and 15‐cm plugs was markedly better than the 5‐cm plugs in vegetated areas, including the H. tasmanica meadow. The use of large seagrass plugs may be appropriate for transplantation in high‐energy wave environments.  相似文献   
5.
6.
Results of semi-quantitative observations and quantitative sampling of seagrasses at coastal and offshore sites along the western Arabian Gulf are presented. Overall seagrass cover (all species together) shows significant positive correlation with latitude, but not with salinity, temperature or depth. The same pattern is shown by Halodule uninervis (Forsk.) Aschers., the dominant species. Mean seagrass biomass ranged from 53–235 g m-2 (dry weight). These values are comparable with biomass estimates from regions in which environmental conditions are generally less extreme than in the Gulf. Seagrass biomass is significantly negatively correlated with depth and sediment grain size. No significant correlation is apparent between seagrass biomass and factors such as season, salinity, or concentrations of nutrients and heavy metals measured. It is pointed out that any correlations observed are not necessarily taken to imply causality.  相似文献   
7.
The coastal ecosystems of temperate North America provide a variety of ecosystem services including high rates of carbon sequestration. Yet, little data exist for the carbon stocks of major tidal wetland types in the Pacific Northwest, United States. We quantified the total ecosystem carbon stocks (TECS) in seagrass, emergent marshes, and forested tidal wetlands, occurring along increasing elevation and decreasing salinity gradients. The TECS included the total aboveground carbon stocks and the entire soil profile (to as deep as 3 m). TECS significantly increased along the elevation and salinity gradients: 217 ± 60 Mg C/ha for seagrass (low elevation/high salinity), 417 ± 70 Mg C/ha for low marsh, 551 ± 47 Mg C/ha for high marsh, and 1,064 ± 38 Mg C/ha for tidal forest (high elevation/low salinity). Soil carbon stocks accounted for >98% of TECS in the seagrass and marsh communities and 78% in the tidal forest. Soils in the 0–100 cm portion of the profile accounted for only 48%–53% of the TECS in seagrasses and marshes and 34% of the TECS in tidal forests. Thus, the commonly applied limit defining TECS to a 100 cm depth would greatly underestimate both carbon stocks and potential greenhouse gas emissions from land‐use conversion. The large carbon stocks coupled with other ecosystem services suggest value in the conservation and restoration of temperate zone tidal wetlands through climate change mitigation strategies. However, the findings suggest that long‐term sea‐level rise effects such as tidal inundation and increased porewater salinity will likely decrease ecosystem carbon stocks in the absence of upslope wetland migration buffer zones.  相似文献   
8.
9.
The effects of opening the Suez Canal as a connection between the Red Sea and the Mediterranean Sea were reported for a number of marine species. However, the evolutionary origin of the seagrasses in the Red Sea and the linking population genetics of seagrasses between the Arabian Sea, the Gulf of Aden, the Red Sea and the Mediterranean Sea have not yet been investigated in detail. The invasion of Halophila stipulacea Asch. from the Red Sea into the Mediterranean Sea after the opening of the Suez Canal was already recorded. We hypothesize that Halophila ovalis populations in the Red Sea developed through long-term historical processes such as vicariant evolutionary diversification. Seagrass samples were collected along the Egyptian coastline of the Red Sea and analysed by the molecular marker ITS. The sequences were compared with published ITS sequences from seagrasses collected in the whole area of interest. In this study, we reveal the linking population genetics, phylogeography and phylogenetics of two dominant seagrass species, Halophila stipulacea and Halophila ovalis, among species collected in the Red Sea and worldwide. The results indicate that the Red Sea Halophila ovalis populations do not group to Halophila ovalis worldwide, and Halophila major, Halophila ovalis collected worldwide and Halophila ovalis collected at the Red Sea are sister clades. Hence, vicariant evolutionary diversification for Halophila ovalis may occur in the Red Sea.  相似文献   
10.
Global losses of seagrasses and mangroves, eutrophication‐driven increases in ephemeral algae, and macrophyte invasions have impacted estuarine detrital resources. To understand the implications of these changes on benthic ecosystem processes, we tested the hypotheses that detrital source richness, mix identity, and biomass influence benthic primary production, metabolism, and nutrient fluxes. On an estuarine muddy sandflat, we manipulated the availability of eight detrital sources, including mangrove, seagrass, and invasive and native algal species that have undergone substantial changes in distribution. Mixes of these detrital sources were randomly assigned to one of 12 treatments and dried detrital material was added to seventy‐two 0.25 m2 plots (= 6 plots). The treatments included combinations of either two or four detrital sources and high (60 g) or low (40 g) levels of enrichments. After 2 months, the dark, light, and net uptake of NH4+, dissolved inorganic nitrogen, and the dark efflux of dissolved organic nitrogen were each significantly influenced by the identity of detrital mixes, rather than detrital source richness or biomass. However, gross and net primary productivity, average oxygen flux, and net NOX and dissolved inorganic phosphorous fluxes were significantly greater in treatments with low than with high detrital source richness. These results demonstrate that changes in detrital source richness and mix identity may be important drivers of estuarine ecosystem performance. Continued impacts to estuarine macrophytes may, therefore, further alter detritus‐fueled productivity and processes in estuaries. Specific tests that address predicted future changes to detrital resources are required to determine the consequences of this significant environmental problem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号