首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2011年   2篇
  2010年   3篇
  2007年   1篇
  2006年   1篇
排序方式: 共有22条查询结果,搜索用时 637 毫秒
1.
《Cell reports》2020,30(4):1129-1140.e5
  1. Download : Download high-res image (253KB)
  2. Download : Download full-size image
  相似文献   
2.
It is well known that lipids are heterogeneously distributed throughout the cell. Most lipid species are synthesized in the endoplasmic reticulum (ER) and then distributed to different cellular locations in order to create the distinct membrane compositions observed in eukaryotes. However, the mechanisms by which specific lipid species are trafficked to and maintained in specific areas of the cell are poorly understood and constitute an active area of research. Of particular interest is the distribution of phosphatidylserine (PS), an anionic lipid that is enriched in the cytosolic leaflet of the plasma membrane. PS transport occurs by both vesicular and non‐vesicular routes, with members of the oxysterol‐binding protein family (Osh6 and Osh7) recently implicated in the latter route. In addition, the flippase activity of P4‐ATPases helps build PS membrane asymmetry by preferentially translocating PS to the cytosolic leaflet. This asymmetric PS distribution can be used as a signaling device by the regulated activation of scramblases, which rapidly expose PS on the extracellular leaflet and play important roles in blood clotting and apoptosis. This review will discuss recent advances made in the study of phospholipid flippases, scramblases and PS‐specific lipid transfer proteins, as well as how these proteins contribute to subcellular PS distribution.   相似文献   
3.
Plasmacytoid dendritic cells (pDCs), also known as type I interferon (IFN)-producing cells, are specialized immune cells characterized by their extraordinary capabilities of mounting rapid and massive type I IFN response to nucleic acids derived from virus, bacteria or dead cells. PDCs selectively express endosomal Toll-like receptor (TLR) 7 and TLR9, which sense viral RNA and DNA respectively. Following type I IFN and cytokine responses, pDCs differentiate into antigen presenting cells and acquire the ability to regulate T cell-mediated adaptive immunity. The functions of pDCs have been implicated not only in antiviral innate immunity but also in immune tolerance, inflammation and tumor microenvironments. In this review, we will focus on TLR7/9 signaling and their regulation by pDC-specific receptors.  相似文献   
4.
Sphingosine 1‐phosphate (S1P) in blood is phosphorylated, stored, and transported by red blood cells (RBC). Release of S1P from RBC into plasma is a regulated process that does not occur in plasma‐ or serum‐free media. Plasma fractionation and incubations with isolated and recombinant proteins identified high density lipoprotein (HDL) and serum albumin (SA) as non‐redundant endogenous triggers for S1P release from RBC. S1P bound to SA and HDL was able to stimulate the S1P1 receptor in calcium flux experiments. The binding capability of acceptor molecules triggers S1P release, as demonstrated with the anti‐S1P antibody Sphingomab?. More S1P was extracted from RBC membranes by HDL than by SA. Blood samples from anemic patients confirmed a reduced capacity for S1P release in plasma. In co‐cultures of RBC and endothelial cells (EC), we observed transcellular transportation of S1P as a second function of RBC‐associated S1P in the absence of SA and HDL and during tight RBC‐EC contact, mimicking conditions in tissue interstitium and capillaries. In contrast to S1P bound to SA and HDL, RBC‐associated S1P was significantly incorporated by EC after S1P lyase (SGPL1) inhibition. RBC‐associated S1P, therefore, has two functions: (1) It contributes to the cellular pool of SGPL1‐sensitive S1P in tissues after transcellular transportation and (2) it helps maintain extracellular S1P levels via SA and HDL independently from SGPL1 activity. J. Cell. Biochem. 109: 1232–1243, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
5.
Mature human erythrocytes circulate in blood for approximately 120 days, and senescent erythrocytes are removed by splenic macrophages. During this process, the cell membranes of senescent erythrocytes express phosphatidylserine, which is recognized as a signal for phagocytosis by macrophages. However, the mechanisms underlying phosphatidylserine exposure in senescent erythrocytes remain unclear. To clarify these mechanisms, we isolated senescent erythrocytes using density gradient centrifugation and applied fluorescence‐labelled lipids to investigate the flippase and scramblase activities. Senescent erythrocytes showed a decrease in flippase activity but not scramblase activity. Intracellular ATP and K+, the known influential factors on flippase activity, were altered in senescent erythrocytes. Furthermore, quantification by immunoblotting showed that the main flippase molecule in erythrocytes, ATP11C, was partially lost in the senescent cells. Collectively, these results suggest that multiple factors, including altered intracellular substances and reduced ATP11C levels, contribute to decreased flippase activity in senescent erythrocytes in turn to, present phosphatidylserine on their cell membrane. The present study may enable the identification of novel therapeutic approaches for anaemic states, such as those in inflammatory diseases, rheumatoid arthritis, or renal anaemia, resulting from the abnormally shortened lifespan of erythrocytes.  相似文献   
6.
7.
Phospholipid scramblase 3 (PLS3) is a member of the phospholipid scramblase family present in mitochondria. PLS3 plays an important role in regulation of mitochondrial morphology, respiratory function, and apoptotic responses. PLS3 is phosphorylated by PKC-delta at Thr21 and is the mitochondrial target of PKC-delta-induced apoptosis. Cells with overexpression of PLS3, but not the phosphoinhibitory mutant PLS3(T21A), are more susceptible to apoptosis induced by AD198, an extranuclear targeted anthracycline that activates PKC-delta. Here we report that the phosphomimetic mutant of PLS3(T21D) by itself can induce apoptosis in HeLa cells. Using proteoliposomes with addition of pyrene-labeled phosphatidylcholine (PC) at the outer leaflet, we measured the lipid flip-flop activity of PLS3 and its phosphorylation mutant. PLS3(T21D) is more potent than wild-type PLS3 or PLS3(T21A) to transfer pyrene-PC from the outer leaflet to the inner leaflet of liposomes. Based on our previous finding that PLS3 enhances tBid-induced mitochondrial damages, we tested the hypothesis that PLS3 enhances cardiolipin translocation to mitochondrial surface and facilitates tBid targeting. Fluorescein-labeled tBid(G94E) was used as a probe to quantify cardiolipin on the surface of mitochondria. Mitochondria from cells treated with AD198 or cells expressing PLS3(T21D) had a higher level of tBid-binding capacity than control cells or cells expressing wild-type PLS3. These findings indicate that phosphorylation of PLS3 by PKC-delta induces PLS3 activation to facilitate mitochondrial targeting of tBid and apoptosis.  相似文献   
8.
9.
Human phospholipid scramblase 1 (SCR) consists of a large cytoplasmic domain and a small presumed transmembrane domain near the C-terminal end of the protein. Previous studies with the SCRΔ mutant lacking the C-terminal portion (last 28 aa) revealed the importance of this C-terminal moiety for protein function and calcium-binding affinity. The present contribution is intended to elucidate the effect of the transmembrane domain suppression on SCRΔ binding to model membranes (lipid monolayers and bilayers) and on SCRΔ reconstitution in proteoliposomes. In all cases the protein cytoplasmic domain showed a great affinity for lipid membranes, and behaved in most aspects as an intrinsic membrane protein. Assays have been performed in the presence of phosphatidylserine, presumably important for the SCR cytoplasmic domain to be electrostatically anchored to the plasma membrane inner surface. The fusion protein maltose binding protein-SCR has also been studied as an intermediate case of a molecule that can insert into the bilayer hydrophobic core, yet it is stable in detergent-free buffers. Although the intracellular location of SCR has been the object of debate, the present data support the view of SCR as an integral membrane protein, in which not only the transmembrane domain but also the cytoplasmic moiety play a role in membrane docking of the protein.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号