首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   1篇
  国内免费   8篇
  2023年   6篇
  2022年   3篇
  2021年   6篇
  2020年   7篇
  2019年   9篇
  2017年   5篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   8篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1996年   6篇
  1995年   1篇
  1994年   6篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
1.
Recombinant Chinese hamster ovary cells producing Von Willebrand factor have been successfully grown in gelatin macroporous microcarriers (Cultispher-G). Serum-free cultures were maintained in 1, 4, and 10 liter fermentors for more than two months. Comparative studies with Cytodex-3 microcarriers have been performed in 1 liter fermentors. The lower specific Von Willebrand factor productivity of CHO cells cultivated on Cultispher-G were offset by higher cell densities (107–2×107 cells/ml). Volumetric Von Willebrand factor productivity was influenced by oxygen concentration, and remained stable during scale-up from 1 to 10 liter fermentors.  相似文献   
2.
Process intensity of fixed bed glass sphere culture systems is increased considerably by replacing solid glass spheres with open pore glass spheres. This technique demonstrates the possibility of having a system capable of both volumetric and cell density scale up and being suitable for substrate attached and suspension cells. The yields achieved for a number of attached cell lines (approximately 107/ml) demonstrate an increase approaching one order of magnitude over solid glass spheres (approximately 106/ml). Also suspension cells were successfully entrapped in the open pore structure with similar yields.  相似文献   
3.
Because of concern for cell damage, very low agitation energy inputs have been used in industrial animal cell bioreactors, typical values being two orders of magnitude less than those found in bacterial fermentations. Aeration rates are also very small. As a result, such bioreactors might be both poorly mixed and also unable to provide the higher oxygen up-take rates demanded by more intensive operation. This paper reports experimental studies both of K L a and of mixing (via pH measurements) in bioreactors up to 8 m3 at Wellcome and of scaled down models of such reactors at Birmingham. Alongside these physical measurements, sensitivity of certain cell lines to continuously controlled dO2 has been studied and the oxygen up-take rates measured in representative growth conditions. An analysis of characteristic times and mixing theory, together with other recent work showing that more vigorous agitation and aeration can be used especially in the presence of Pluronic F-68, indicates ways of improving their performance. pH gradients offer a special challenge.  相似文献   
4.
Human 293S cells, a cell line adapted to suspension culture, were grown to 5×106 cells/mL in batch with calcium-free DMEM. These cells, infected with new constructions of adenovirus vectors, yielded as much as 10 to 20% recombinant protein with respect to the total cellular protein content. Until recently, high specific productivity of recombinant protein was limited to low cell density infected cultures of no more than 5×105 cells/mL. In this paper, we show with a model protein, Protein Tyrosine Phosphatase 1C how high product yield can be maintained at high cell densities of 2×106 cells/mL by a medium replacement strategy. This allows the production of as much as 90 mg/L of active recombinant protein per culture volume. Analysis of key limiting/inhibiting medium components showed that glucose addition along with pH control can yield the same productivity as a medium replacement strategy at high cell density in calcium-free DMEM. Finally, the above results were reproduced in 3L bioreactor suspension culture thereby establishing the scalability of this expression system. The process we developed is used routinely with the same success for the production of various recombinant proteins and viruses.Abbreviations CFDMEM calcium-free DMEM - CS bovine calf serum - hpi hours post-infection - J+ enriched Joklik medium - MLP major late promoter - MOI multiplicity of infection (# of infectious viral particle/cell) - q specific consumption rate (mole/cell.h) - pfu plaque forming unit (# of infectious viral particle) - Y yield (g/E6 cells or mole/cell)  相似文献   
5.
Based on small-scale synthesis (0.3 g), a 100-g scale-up synthesis of crude [Aib8, Arg34]-glucagon-like peptide-1 (GLP-1) (7–37) was completed. The crude [Aib8, Arg34]-GLP-1 (7–37) was purified using a dynamic axial compression column 200 (DAC-200). Approximately 61 g of [Aib8, Arg34]-GLP-1 (7–37) with a purity of >99% was obtained through one-step reverse-phase chromatography. The purification yield was approximately 92%. The yield from the total reaction was approximately 60%. In summary, we developed an economical and environmentally friendly route to the synthesis and purification of crude [Aib8, Arg34]-GLP-1 (7–37), laying a foundation for subsequent industrial production.  相似文献   
6.
Single-use bioreactors (SUBs, or disposable bioreactors) are extensively used for the clinical and commercial production of biologics. Despite widespread application, minimal results have been reported utilizing the turndown ratio; an operation mode where the working range of the bioreactor can be expanded to include low fluid volumes. In this work, a systematic investigation into free surface mass transfer and cell growth in high turndown single-use bioreactors is presented. This approach, which combines experimental mass transfer measurements with numerical simulation, deconvolutes the combined effects of headspace mixing and the free surface convective mass transfer on cell growth. Under optimized conditions, mass transfer across the interface alone may be sufficient to satisfy oxygen demands of the cell culture. Within the context of high turndown bioreactors, this finding provides a counterpoint to traditional sparge-based bioreactor operational philosophy. Multiple monoclonal antibody-producing cell lines grown using this high turndown approach showed similar viable cell densities to those cells expanded using a traditional cell bag rocker. Furthermore, cells taken directly from the turndown expansion and placed into production showed identical growth characteristics to traditionally expanded cultures. Taken together, these results suggest that the Xcellerex SUB can be run at a 5:1 working volume as a seed to itself, with no need for system modifications, potentially simplifying preculture operations.  相似文献   
7.
Cation exchange chromatography (CEX) is an essential part of most monoclonal antibody (mAb) purification platforms. Process characterization and root cause investigation of chromatographic unit operations are performed using scale down models (SDM). SDM chromatography columns typically have the identical bed height as the respective manufacturing-scale, but a significantly reduced inner diameter. While SDMs enable process development demanding less material and time, their comparability to manufacturing-scale can be affected by variability in feed composition, mobile phase and resin properties, or dispersion effects depending on the chromatography system at hand. Mechanistic models can help to close gaps between scales and reduce experimental efforts compared to experimental SDM applications. In this study, a multicomponent steric mass-action (SMA) adsorption model was applied to the scale-up of a CEX polishing step. Based on chromatograms and elution pool data ranging from laboratory- to manufacturing-scale, the proposed modeling workflow enabled early identification of differences between scales, for example, system dispersion effects or ionic capacity variability. A multistage model qualification approach was introduced to measure the model quality and to understand the model's limitations across scales. The experimental SDM and the in silico model were qualified against large-scale data using the identical state of the art equivalence testing procedure. The mechanistic chromatography model avoided limitations of the SDM by capturing effects of bed height, loading density, feed composition, and mobile phase properties. The results demonstrate the applicability of mechanistic chromatography models as a possible alternative to conventional SDM approaches.  相似文献   
8.
Tiancimycins (TNMs) are a group of 10-membered anthraquinone-fused enediynes, newly discovered from Streptomyces sp. CB03234. Among them, TNM-A and TNM-D have exhibited excellent antitumor performances and could be exploited as very promising warheads for the development of anticancer antibody-drug conjugates (ADCs). However, their low titers, especially TNM-D, have severely limited following progress. Therefore, the streptomycin-induced ribosome engineering was adopted in this work for strain improvement of CB03234, and a TNMs high producer S. sp. CB03234-S with the K43N mutation at 30S ribosomal protein S12 was successfully screened out. Subsequent media optimization revealed the essential effects of iodide and copper ion on the production of TNMs, while the substitution of nitrogen source could evidently promote the accumulation of TNM-D, and the ratio of produced TNM-A and TNM-D was responsive to the change of carbon and nitrogen ratio in the medium. Further amelioration of the pH control in scaled up 25 L fermentation increased the average titers of TNM-A and TNM-D up to 13.7 ± 0.3 and 19.2 ± 0.4 mg/L, respectively. The achieved over 45-fold titer improvement of TNM-A, and 109-fold total titer improvement of TNM-A and TNM-D enabled the efficient purification of over 200 mg of each target molecule from 25 L fermentation. Our efforts have demonstrated a practical strategy for titer improvement of anthraquinone-fused enediynes and set up a solid base for the pilot scale production and preclinical studies of TNMs to expedite the future development of anticancer ADC drugs.  相似文献   
9.
This study aims to investigate the effect of the ice nucleation temperature on the primary drying process using an ice fog technique for temperature-controlled nucleation. In order to facilitate scale up of the freeze-drying process, this research seeks to find a correlation of the product resistance and the degree of supercooling with the specific surface area of the product. Freeze-drying experiments were performed using 5% wt/vol solutions of sucrose, dextran, hydroxyethyl starch (HES), and mannitol. Temperature-controlled nucleation was achieved using the ice fog technique where cold nitrogen gas was introduced into the chamber to form an “ice fog”, there-by facilitating nucleation of samples at the temperature of interest. Manometric temperature measurement (MTM) was used during primary drying to evaluate the product resistance as a function of cake thickness. Specific surface areas (SSA) of the freeze-dried cakes were determined. The ice fog technique was refined to successfully control the ice nucleation temperature of solutions within 1°C. A significant increase in product resistance was produced by a decrease in nucleation temperature. The SSA was found to increase with decreasing nucleation temperature, and the product resistance increased with increasing SSA. The ice fog technique can be refined into a viable method for nucleation temperature control. The SSA of the product correlates well with the degree of supercooling and with the resistance of the product to mass transfer (ie, flow of water vapor through the dry layer). Using this correlation and SSA measurements, one could predict scaleup drying differences and accordingly alter the freeze-drying process so as to bring about equivalence of product temperature history during lyophilization.  相似文献   
10.
Wiseman A 《Biotechnology letters》2003,25(19):1581-1590
Both immobilized enzymes (IME) and immobilized cells (IMC) are acceptable as the biocatalysts essential for the attainment of rapid rates of bioconversion in bioreactors. IMC can display higher than expected cellular permeability whilst IME can exhibit high catalytic constant (kcat/Km) despite limitations on substrate utilisation due to an unstired diffusion layer of solvent. Scale-down switching from IMC to IME involves the replacement of high-volume biotechnology by low-volume biotechnology, sometimes using IME mimics in partially non-aqueous solvent systems. Highly purified IME systems covalently immobilised to particles of, for instance, microcrystalline cellulose or porous glass, can retain both the hydrophilic and hydrophobic intermediate products in situ of the chosen sequence of enzyme reactions. These bioconversions, therefore, are as efficient as those with IMC where enzymes are often particle- or membrane-bound so that even hydrophilic intermediates are not released rapidly into solution. This mimicry of in vivo biosynthetic pathways that are compartmentalised in vivo (e.g. of lysosomes, mitochondria and endoplasmic reticulum) can replace larger IMC by IME especially in application of up to 2700 cytochromes P450 isoforms in bioprocessing. In silico investigation of appropriate model IME systems, in comparison with IMC systems, will be needed to define the optimal bioreactor configuration and parameters of operation, such as pH, T and oxygen mass transfer rate (OTR). The application solely of hazop (applied hazard and operability concepts) may, nevertheless, not be recommended to replace fully the in silico and real-lab pilot-scale and scale studies. Here, food-safe bioprocessing has to be achieved without incorporation of recognised biohazards; especially in the form of unacceptable levels of toxic metals that promote a risk-analysis uncertainty.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号