首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
  国内免费   2篇
  2020年   1篇
  2018年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1994年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
The influence of biodiversity on ecosystem functioning is a major concern of ecological research. However, the biodiversity–ecosystem functioning relationship has very often been studied independently from the mechanisms allowing coexistence. By considering the effects of dispersal and niche partitioning on diversity, the metacommunity perspective predicts a spatial scale-dependence of the shape of the relationship. Here, we present experimental evidence of such scale-dependent patterns. After approximately 500 generations of diversification in a spatially heterogeneous environment, we measured functional diversity (FD) and productivity at both local and regional scales in experimental source-sink metacommunities of the bacterium Pseudomonas fluorescens SBW25. At the regional scale, environmental heterogeneity yielded high levels of FD and we observed a positive correlation between diversity and productivity. At the local scale, intermediate dispersal increased local FD through a mass effect but there was no correlation between diversity and productivity. These experimental results underline the importance of considering the mechanisms maintaining biodiversity and the appropriate spatial scales in understanding its relationship with ecosystem functioning.  相似文献   
2.
We tested two biologically based predictions that potentially influence scales of spatial association between Atlantic cod, Gadus morhua , and prey populations of capelin, Mallotus vilhsus . If cod aggregate in response to concentrations of prey, then spatial association (coherence) between capelin and cod was predicted to peak at the scale of maximum capelin spatial variance. If capelin-cod coherence did not match the scale of maximum prey spatial variability, then capelin-cod coherence was predicted to peak at the spatial scale that maximizes net energetic benefit to the predator. Contrary to predictions, we found no evidence of aggregative responses of cod to capelin over resolution scales of 20 m to 10 km. This result was observed consistently at the temporal scale of a single transect ( c . 1 h duration) and at the scale of averaged transects ( c . 2 weeks duration). Estimates of cod foraging energetics showed that they were not constrained by physiology to aggregate relative to capelin at any scale less than 10 km. A net energetic gain of 478 to 784 kJ would result if a 44 cm, 752 g cod consumed a ration of eight to 12 capelin over a period of 58 h. Energetic calculations included costs of egestion and excretion (317 to 476 kJ), maintenance (58 kJ), digestion (125 to 188 kJ), and continuous swimming during ration assimilation (79 kJ). During this period, a 44 cm cod could travel over 38 km swimming at 1 b.l. s−1. Foraging cod are virtually certain to encounter capelin over this distance based on the abundance of pre-spawning capelin present in coastal bays during the spawning season. This study illustrates that aggregative responses of predators do no occur at all scales and possibly occur over a very limited range of scales.  相似文献   
3.
4.
Studying the patterns in which local extinctions occur is critical to understanding how extinctions affect biodiversity at local, regional and global spatial scales. To understand the importance of patterns of extinction at a regional spatial scale, we use data from extirpations associated with a widespread pathogenic agent of amphibian decline, Batrachochytrium dendrobatidis ( Bd ) as a model system. We apply novel null model analyses to these data to determine whether recent extirpations associated with Bd have resulted in selective extinction and homogenization of diverse tropical American amphibian biotas. We find that Bd -associated extinctions in this region were nonrandom and disproportionately, but not exclusively, affected low-occupancy and endemic species, resulting in homogenization of the remnant amphibian fauna. The pattern of extirpations also resulted in phylogenetic homogenization at the family level and ecological homogenization of reproductive mode and habitat association. Additionally, many more species were extirpated from the region than would be expected if extirpations occurred randomly. Our results indicate that amphibian declines in this region are an extinction filter, reducing regional amphibian biodiversity to highly similar relict assemblages and ultimately causing amplified biodiversity loss at regional and global scales.  相似文献   
5.
景观格局对植物多样性的影响已经在很多研究中得到了验证,但有关城市景观的影响仍然知之甚少。为了探究城市化景观格局对植物多样性的影响及其尺度效应,本研究在北京市顺义区调查了105个样地,计算每个样地的α和β多样性指数;并以100 m为步长,分析了100~1000 m范围内的10个尺度43个城市的景观格局指数。结果表明: 在所有尺度上,城市景观面积指数、核心类指数和边缘指数与本土植物多样性均呈负相关;形状复杂性指数在小尺度内有利于植物多样性,而面积加权复杂性指数则在较大尺度上影响明显。其他指数如城市斑块的连接性、邻近性、内聚性、破碎性和散布并列指数与本土植物多样性之间的关系轻微且不稳定。城市化强度与尺度呈负相关,与各个尺度的植物多样性呈负相关。合理将城市区域分为许多边缘简单的小斑块,能够更好地保护本土植物多样性。该研究提出了保护城市植物多样性的景观格局建议,为生态城市建设提供参考。  相似文献   
6.
South East Asia is widely regarded as a centre of threatened biodiversity owing to extensive logging and forest conversion to agriculture. In particular, forests degraded by repeated rounds of intensive logging are viewed as having little conservation value and are afforded meagre protection from conversion to oil palm. Here, we determine the biological value of such heavily degraded forests by comparing leaf-litter ant communities in unlogged (natural) and twice-logged forests in Sabah, Borneo. We accounted for impacts of logging on habitat heterogeneity by comparing species richness and composition at four nested spatial scales, and examining how species richness was partitioned across the landscape in each habitat. We found that twice-logged forest had fewer species occurrences, lower species richness at small spatial scales and altered species composition compared with natural forests. However, over 80 per cent of species found in unlogged forest were detected within twice-logged forest. Moreover, greater species turnover among sites in twice-logged forest resulted in identical species richness between habitats at the largest spatial scale. While two intensive logging cycles have negative impacts on ant communities, these degraded forests clearly provide important habitat for numerous species and preventing their conversion to oil palm and other crops should be a conservation priority.  相似文献   
7.
We surveyed freshwater ponds (localities) nested within watersheds (regions) to evaluate the relationship between productivity and animal species richness at different spatial scales. In watersheds where the ponds were relatively distant from one another (likely reducing the level of interpond dispersal of many organisms), we found a scale‐dependent productivity–diversity relationship; at local scales (among ponds), diversity was a hump‐shaped function of productivity, whereas at regional scales (among watersheds), diversity monotonically increased with productivity. Furthermore, this relationship emerged because there was a strong relationship between productivity and pond‐to‐pond species compositional differences. Alternatively, in watersheds where ponds were relatively close together (likely leading to higher rates of dispersal of many organisms), we found no scale‐dependence; diversity was a hump‐shaped function of productivity at both local and regional scales. Here, the relationship between species compositional dissimilarity and productivity was much weaker. We conclude that whether or not scale‐dependence is observed in productivity–diversity relationships will depend, at least in part, on the degree of connectivity among localities within regions.  相似文献   
8.
Katherine Mertes  Walter Jetz 《Ecography》2018,41(10):1604-1615
Understanding species’ responses to environmental conditions, and how these ­species–environment associations shape spatial distributions, are longstanding goals in ecology and biogeography. However, an essential component of species–environment relationships – the spatial unit, or grain, at which they operate – remains unresolved. We identify three components of scale‐dependence in analyses of species–environment associations: 1) response grain, the grain at which species respond most strongly to their environment; 2) environment spatial structure, the pattern of spatial autocorrelation intrinsic to an environmental factor; and 3) analysis grain, the grain at which analyses are conducted and ecological inferences are made. We introduce a novel conceptual framework that defines these scale components in the context of analyzing species–environment relationships, and provide theoretical examples of their interactions for species with various ecological attributes. We then use a virtual species approach to investigate the impacts of each component on common methods of measuring and predicting species–environment relationships. We find that environment spatial structure has a substantial impact on the ability of even simple, univariate species distribution models (SDMs) to recover known species–­environment associations at coarse analysis grains. For simulated environments with ‘fine’ and ‘intermediate’ spatial structure, model explanatory power, and the frequency with which simple SDMs correctly estimated a virtual species’ response to the simulated environment, dramatically declined as analysis grain increased. Informed by these results, we use a scaling analysis to identify maximum analysis grains for individual environmental factors, and a scale optimization procedure to determine the grain of maximum predictive accuracy. Implementing these analysis grain thresholds and model performance standards in an example east African study system yields more accurate distribution predictions, compared to SDMs independently constructed at arbitrary analysis grains. Finally, we integrate our conceptual framework with virtual and empirical results to provide practical recommendations for researchers asking common questions about species–environment relationships.  相似文献   
9.
张忠华  胡刚  祝介东  倪健 《生态学报》2012,32(18):5663-5672
物种多样性的空间分布格局及其尺度效应是生态学研究的重点,对于理解物种多样性的形成和维持机制以及生物多样性的管理和保护均具有重要意义。以贵州茂兰国家级自然保护区分布的亚热带原生性喀斯特常绿落叶阔叶混交林为研究对象,分析了2个1hm2(100m×100m)样地中物种多度和丰富度的空间分布特征及其与取样尺度的关系,采用方差和变异系数描述多度和丰富度在5个尺度(5m×5m,10m×10m,20m×20m,25m×25m,50m×50m)上的空间变异性。结果表明:(1)两个样地的物种多度和丰富度具有尺度依赖性特征;(2)由于多度具有叠加性,物种多度的方差随着尺度的增加呈线性增加,而变异系数呈线性下降;(3)丰富度的方差随尺度的增加表现出单峰分布的特征,在25 m×25 m尺度上达到最大值,变异系数则随取样尺度的增加而呈线性下降。研究表明,物种多度具有尺度推演规律,而丰富度却没有,因此,应慎重进行物种丰富度的尺度推演。在分析喀斯特森林物种多样性时,应注重尺度效应带来的影响。  相似文献   
10.
Abstract Coral-reef systems are conspicuously multi-scalar, with scales set by reef-fish biology, by ecological processes that act upon them and by the architectural patchiness of the coral-reef environment in which they reside. Empirical ecological studies cannot be executed in a way that is independent of spatial scale, and results are inextricably scale-dependent. Further, although the question asked and the measurements planned will suggest appropriate scales, it is often the case in these multi-scalar systems that there is no single correct scale at which to sample. Instead, there must be a process of compromise in designing projects, an awareness of scale in implementing them and careful consideration of the scale-dependence of the results. Some useful principles are presented to help with the process of project design and interpretation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号