首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   6篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2014年   5篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   7篇
  2008年   16篇
  2007年   11篇
  2006年   15篇
  2005年   15篇
  2004年   17篇
  2003年   15篇
  2002年   26篇
  2001年   16篇
  2000年   13篇
  1999年   5篇
  1998年   2篇
  1997年   5篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1984年   1篇
  1976年   2篇
  1971年   1篇
排序方式: 共有201条查询结果,搜索用时 15 毫秒
1.
HNCO-based 3D pulse schemes are presented for measuring 1HN-15N,15N-13CO, 1HN-13CO,13CO-13C and 1HN-13C dipolar couplings in 15N,13C,2-labeled proteins. The experiments are based on recently developed TROSY methodology for improving spectral resolution and sensitivity. Data sets recorded on a complex of Val, Leu, Ile (1 only) methyl protonated 15N,13C,2H-labeled maltose binding protein and -cyclodextrin as well as 15N,13C,2H-labeled human carbonic anhydrase II demonstrate that precise dipolar couplings can be obtained on proteins in the 30–40 kDa molecular weight range. These couplings will serve as powerful restraints for obtaining global folds of highly deuterated proteins.  相似文献   
2.
NMR spectra of ubiquitin in the presence of bicelles at a concentration of 25% w/v have been recorded under sample spinning conditions for different angles of rotation. For an axis of rotation equal to the magic angle, the (1)H/(15)N HSQC recorded without any (1)H decoupling in the indirect dimension corresponds to the classical spectrum obtained on a protein in an isotropic solution and allows the measurement of scalar J-couplings (1) J (NH). For an angle of rotation smaller than the magic angle, the bicelles orient with their normal perpendicular to the spinning axis, whereas for an angle of rotation greater than the magic angle the bicelles orient with their normal along the spinning axis. This bicelle alignment creates anisotropic conditions that give rise to the observation of residual dipolar couplings in ubiquitin. The magnitude of these dipolar couplings depends directly on the angle that the rotor makes with the main magnetic field. By changing this angle in a controlled manner, residual dipolar couplings can be either scaled up or down thus offering the possibility to study simultaneously a wide range of dipolar couplings in the same sample.  相似文献   
3.
The 39 kDa receptor-associated protein (RAP) is an endoplasmic reticulum resident protein that binds tightly to the low-density lipoprotein receptor-related protein (LRP) as well as to other members of the low-density lipoprotein receptor superfamily. The association of RAP with LRP prevents this receptor from interacting with ligands. RAP is a three-domain protein that contains two independent LRP binding sites; one located within domains 1 and 2, and one located within domain 3. As the first step toward defining the structure of the full-length protein and understanding the interaction between RAP and this family of receptors, we have determined the 3D structure of domain 1 using constraints derived from heteronuclear multi-dimensional NMR spectra, including NOEs, dihedral angles, J-couplings and chemical shifts, as well as two sets of non-correlated residual dipolar couplings measured from the protein solutions in anisotropic media of Pf1 and 6% polyacrylamide gel. The backbone C(alpha) rmsd between the current structure and a homo-nuclear NOE-based structure is about 2 A. The large rmsd mainly reflects the significant differences in helical orientation and in the structural details of the long helix (helix 2) between the two structures.  相似文献   
4.
The potential for using paramagnetic lanthanide ions to partially align troponin C in solution as a tool for the structure determination of bound troponin I peptides has been investigated. A prerequisite for these studies is an understanding of the order of lanthanide ion occupancy in the metal binding sites of the protein. Two-dimensional [(1)H, (15)N] HSQC NMR spectroscopy has been used to examine the binding order of Ce(3+), Tb(3+), and Yb(3+) to both apo- and holo-forms of human cardiac troponin C (cTnC) and of Ce(3+) to holo-chicken skeletal troponin C (sTnC). The disappearance of cross-peak resonances in the HSQC spectrum was used to determine the order of occupation of the binding sites in both cTnC and sTnC by each lanthanide. For the lanthanides tested, the binding order follows that of the net charge of the binding site residues from most to least negative; the N-domain calcium binding sites are the first to be filled followed by the C-domain sites. Given this binding order for lanthanide ions, it was demonstrated that it is possible to create a cTnC species with one lanthanide in the N-domain site and two Ca(2+) ions in the C-domain binding sites. By using the species cTnC.Yb(3+).2 Ca(2+) it was possible to confer partial alignment on a bound human cardiac troponin I (cTnI) peptide. Residual dipolar couplings (RDCs) were measured for the resonances in the bound (15)N-labeled cTnI(129-148) by using two-dimensional [(1)H, (15)N] inphase antiphase (IPAP) NMR spectroscopy.  相似文献   
5.
A high-resolution multidimensional NMR study of ligand-binding to Escherichia coli malate synthase G (MSG), a 723-residue monomeric enzyme (81.4 kDa), is presented. MSG catalyzes the condensation of glyoxylate with an acetyl group of acetyl-CoA, producing malate, an intermediate in the citric-acid cycle. We show that despite the size of the protein, important structural and dynamic information about the molecule can be obtained on a per-residue basis. 15N-1HN residual dipolar couplings and carbonyl chemical shift changes upon alignment in Pf1 phage establish that there are no significant domain reorientations in the molecule upon ligand binding, in contrast to what was anticipated on the basis of both the X-ray structure of the glyoxylate-bound form of the enzyme and structural studies of a related set of proteins. The chemical shift changes of 1HN, 15N and 13CO nuclei upon binding of pyruvate, a glyoxylate-mimicking inhibitor, and acetyl-CoA have been mapped onto the three-dimensional structure of the molecule. Binding constants of pyruvate, glyoxylate, and acetyl-CoA (in the presence of pyruvate) have been measured, along with the kinetic parameters for glyoxylate and pyruvate binding. The on-rates of pyruvate and glyoxalate binding, approximately 1.2 x 10(6)M(-1)s(-1) and approximately 2.7 x 10(6)M(-1)s(-1), respectively, are significantly lower than what is anticipated from a simple diffusion-controlled process. Some structural implications of the chemical shift perturbations upon binding and the estimated ligand on-rates are discussed.  相似文献   
6.
For the Ras-binding domain of the protein kinase Byr2, only a limited number of NOE contacts could be initially assigned unambiguously, as the quality of the NOESY spectra was too poor. However, the use of residual (1)H-(15)N dipolar couplings in the beginning of the structure determination process allows to overcome this problem. We used a three-step recipe for this procedure. A previously unknown structure could be calculated reasonably well with only a limited number of unambiguously assigned NOE contacts.  相似文献   
7.
The heptasaccharide isolated from the cell wall polysaccharide of Streptococcus mitis J22 serves as an important model for the dynamics and conformation of complex polysaccharides, illustrating the nature of flexibility with rigid epitopes joined by flexible hinges. One-bond C-H residual dipolar couplings (1DCH) and long-range H-H residual dipolar couplings (nDHH) were measured for the heptasaccharide in a cetylpyridinium chloride/hexanol/brine lamellar liquid crystal medium. A method is proposed to determine the nDHH in natural abundance based on a 13C resolved 1H TOCSY pulse sequence previously published to determine the homonuclear scalar couplings. Different methods for interpretation of the 1DCH and the nDHH residual dipolar coupling data obtained were compared and combined with the NOE and long-range H,C and C,C scalar couplings available for this heptasaccharide. A flexible model of the heptasaccharide was determined in which two structurally well-defined regions involving four and two sugar residues, respectively are joined by a flexible hinge which involves two 16 glycosidic linkages.  相似文献   
8.
Residual dipolar couplings for a ligand that is in fast exchange between a free state and a state where it is bound to a macroscopically ordered membrane protein carry precise information on the structure and orientation of the bound ligand. The couplings originate in the bound state but can be detected on the free ligand using standard high resolution NMR. This approach is used to study an analog of the C-terminal undecapeptide of the alpha-subunit of the heterotrimeric G protein transducin when bound to photo-activated rhodopsin. Rhodopsin is the major constituent of disk-shaped membrane vesicles from rod outer segments of bovine retinas, which align spontaneously in the NMR magnet. Photo-activation of rhodopsin triggers transient binding of the peptide, resulting in measurable dipolar contributions to 1J(NH) and 1J(CH) splittings. These dipolar couplings report on the time-averaged orientation of bond vectors in the bound peptide relative to the magnetic field, i.e. relative to the membrane normal. Approximate distance restraints of the bound conformation were derived from transferred NOEs, as measured from the difference of NOESY spectra recorded prior to and after photo-activation. The N-terminal eight residues of the bound undecapeptide adopt a near-ideal alpha-helical conformation. The helix is terminated by an alpha(L) type C-cap, with Gly9 at the C' position in the center of the reverse turn. The angle between the helix axis and the membrane normal is 40 degrees (+/-4) degrees. Peptide protons that make close contact with the receptor are identified by analysis of the NOESY cross-relaxation pattern and include the hydrophobic C terminus of the peptide.  相似文献   
9.
New methods for determining chemical structures from residual dipolar couplings are presented. The fundamental dipolar coupling equation is converted to an elliptical equation in the principal alignment frame. This elliptical equation is then combined with other angular or dipolar coupling constraints to form simple polynomial equations that define discrete solutions for the unit vector(s). The methods are illustrated with residual dipolar coupling data on ubiquitin taken in a single anisotropic medium. The protein backbone is divided into its rigid groups (namely, its peptide planes and C frames), which may be solved for independently. A simple procedure for recombining these independent solutions results in backbone dihedral angles and that resemble those of the known native structure. Subsequent refinement of these - angles by the ROSETTA program produces a structure of ubiquitin that agrees with the known native structure to 1.1 Å C rmsd.  相似文献   
10.
The structure of the 13C,15N-labeled d(GCGAAGC) hairpin, as determined by NMR spectroscopy and refined using molecular dynamics with NOE-derived distances, torsion angles, and residual dipolar couplings (RDCs), is presented. Although the studied molecule is of small size, it is demonstrated that the incorporation of diminutive RDCs can significantly improve local structure determination of regions undefined by the conventional restraints. Very good correlation between the experimental and back-calculated small one- and two-bond 1H-13C, 1H-15N, 13C-13C and 13C-15N coupling constants has been attained. The final structures clearly show typical features of the miniloop architecture. The structure is discussed in context of the extraordinary stability of the d(GCGAAGC) hairpin, which originates from a complex interplay between the aromatic base stacking and hydrogen bonding interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号