首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   11篇
  2023年   4篇
  2021年   2篇
  2020年   6篇
  2019年   8篇
  2018年   2篇
  2017年   6篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2012年   5篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2005年   6篇
  2004年   8篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1991年   2篇
  1987年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
1.
Abstract We present a regional fuel load model (1 km2 spatial resolution) applied in the southern African savanna region. The model is based on a patch-scale production efficiency model (PEM) scaled up to the regional level using empirical relationships between patch-scale behavior and multi-source remote sensing data (spatio-temporal variability of vegetation and climatic variables). The model requires the spatial distribution of woody vegetation cover, which is used to determine separate respiration rates for tree and grass. Net primary production, grass and tree leaf death, and herbivory are also taken into account in this mechanistic modeling approach. The fuel load model has been calibrated and validated from independent measurements taken from savanna vegetation in Africa southward from the equator. A sensitivity analysis on the effect of climate variables (incoming radiation, air temperature, and precipitation) has been conducted to demonstrate the strong role that water availability has in determining productivity and subsequent fuel load over the southern African region. The model performance has been tested in four different areas representative of a regional increasing rainfall gradient—Etosha National Park, Namibia, Mongu and Kasama, Zambia, as well as in Kruger National Park, South Africa. Within each area, we analyze model output from three different magnitudes of canopy coverage (<5, 30, and 50%). We find that fuel load ranges predicted by the model are globally in agreement with field measurements for the same year. High rainfall sustains green herbaceous production late in the dry season and delays tree leaf litter production. Effect of water on production varies across the rainfall gradient with delayed start of green material production in more arid regions.  相似文献   
2.
Summary The spatial overlap of woody plant root systems and that of annual or perennial grasses promotes competition for soil-derived resources. In this study we examined competition for soil nitrogen between blue oak seedlings and either the annual grassBromus mollis or the perennial grassStipa pulchra under controlled outdoor conditions. Short-term nitrogen competition was quantified by injecting15N at 30 cm depth in a plane horizontal to oak seedling roots and that of their neighbors, and calculating15N uptake rates, pool sizes and15N allocation patterns 24 h after labelling. Simultaneously, integrative nitrogen competition was quantified by examining total nitrogen capture, total nitrogen pools and total nitrogen allocation.Stipa neighbors reduced inorganic soil nitrogen content to a greater extent than didBromus plants. Blue oak seedlings responded to lower soil nitrogen content by allocating lower amounts of nitrogen per unit of biomass producing higher root length densities and reducing the nitrogen content of root tissue. In addition, blue oak seedlings growing with the perennial grass exhibited greater rates of15N uptake, on a root mass basis, compensating for higher soil nitrogen competition inStipa neighborhoods. Our findings suggest that while oak seedlings have lower rates of nitrogen capture than herbaceous neighbors, oak seedlings exhibit significant changes in nitrogen allocation and nitrogen uptake rates which may offset the competitive effect annual or perennial grasses have on soil nitrogen content.  相似文献   
3.
CO2 exchange between the atmosphere and soil algal crusts of the Trachypogon savannas of the Orinoco Llanos has been analyzed using an open gas exchange system. These savannas encompass a wide range of physiognomic types, from herbaceous communities to savanna woodlands. A maximum CO2 flux of 0.207 mg m-2 s-1 was measured in the crusts of the Guanipa savannas, while in the other examined crusts (0.035–0.105 mg m-2 s-1) the flux was similar to values reported for terrestrial algae. The CO2 flux data were statistically fitted to the photosynthetically active radiation by a logarithmic relationship, and the photosynthetic efficiencies of the crusts were compared. The activation energy calculated for the CO2 fixation indicates that limitations by diffusion and photochemical processes were excluded in the Guanipa crusts (above 12 kcal mole-1), whereas they were evident in the other crust studied. An optimum CO2 incorporation as a function of the crust water potential was established and carbon gain strategies were proposed on the basis of the results and characteristics of the habitats.  相似文献   
4.
In Venezuela, the alien grasses Melinis minutiflora Beauv. and Hyparrhenia rufa (Nees.) Stapf tend to displace the native savanna plant community dominated by Trachypogon plumosus (Humb. and Bonpl.) Nees. This occurs in either relatively wetter and fertile highland savannas or in drier and less fertile lowland savannas. Although the native and aliens are perennial C4 grasses, higher net assimilation leaf biomass per plant and germination rate of the latter are some causes for their higher growth rates and for their competitive success. The objective of this study is to compare seasonal tissue energy, N, P and K concentrations and the calculated construction costs (CC) between the native grass and either one of the alien grasses from lowland and highland savannas. We predict that, in order to out-compete native plants, alien grasses should be more efficient in resource use as evidenced by lower tissue energy and nutrient concentrations and CC.Tissue energy and nutrient concentration were measured throughout the year and compared between M. minutiflora and the co-occurring local population of T. plumosus in a highland savanna and between H. rufa and its neighbor local population of T. plumosus in a lowland savanna. CC was calculated from energy, N and ash concentrations considering ammonium as the sole N source. Differences between co-occurring species, T. plumosus populations, seasons, and organs were analyzed with ANOVA.Highland and lowland grasses differed in concentration and allocation of energy and nutrients whereas the differences between alien and native grasses were specific for each pair considered. Highland grasses had higher energy, N, P and CC than lowland grasses. These variables were always lowest in the culms. In the more stressed lowland site, tissue energy and nutrient concentrations decreased significantly during the dry season except in the roots of both grasses which had the highest energy and nutrients concentrations during the drought. This seasonal response was more marked in the local lowland population of T. plumosus in which maximum CC alternated seasonally between leaves and roots. Energy and nutrient concentrations and CC were the lowest in H. rufa. In the lowland savannas, the higher efficiency of resource use in the invader grass contributes to its higher competitive success through increased growth rate. In the highlands, overall tissue energy concentration and CC, but not N nor P concentration, were lower in the fast growing M. minutiflora but seasonal differences were lacking. The higher leaf CC in T. plumosus can be attributed to the higher proportion of sclerenchyma tissue which is more expensive to construct. Considering CC, both fast growing alien grasses are more efficient in resource use than the co-occurring native grass. However, the role of CC explaining the competitive success of the former, through higher growth rates, is more evident in the more stressful environment of the lowland savanna.  相似文献   
5.
Tropical and subtropical dry woodlands are rich in biodiversity and carbon. Yet, many of these woodlands are under high deforestation pressure and remain weakly protected. Here, we assessed how deforestation dynamics relate to areas of woodland protection and to conservation priorities across the world's tropical dry woodlands. Specifically, we characterized different types of deforestation frontier from 2000 to 2020 and compared them to protected areas (PAs), Indigenous Peoples' lands and conservation areas for biodiversity, carbon and water. We found that global conservation priorities were always overrepresented in tropical dry woodlands compared to the rest of the globe (between 4% and 96% more than expected, depending on the type of conservation priority). Moreover, about 41% of all dry woodlands were characterized as deforestation frontiers, and these frontiers have been falling disproportionately in areas with important regional (i.e. tropical dry woodland) conservation assets. While deforestation frontiers were identified within all tropical dry woodland classes of woodland protection, they were lower than the average within protected areas coinciding with Indigenous Peoples' lands (23%), and within other PAs (28%). However, within PAs, deforestation frontiers have also been disproportionately affecting regional conservation assets. Many emerging deforestation frontiers were identified outside but close to PAs, highlighting a growing threat that the conserved areas of dry woodland will become isolated. Understanding how deforestation frontiers coincide with major types of current woodland protection can help target context-specific conservation policies and interventions to tropical dry woodland conservation assets (e.g. PAs in which deforestation is rampant require stronger enforcement, inactive deforestation frontiers could benefit from restoration). Our analyses also identify recurring patterns that can be used to test the transferability of governance approaches and promote learning across social–ecological contexts.  相似文献   
6.
7.
Water relations were analysed in a semi-deciduous forest grove occurring in the oxisols of the Orinoco savannas. This grove has a shallow unconsolidated ironstone cuirass, which is overlaid by a sandy loam layer (0.0–0.5 m) that contains more than 90% of the grove forest root phytomass. Evapotranspiration and through drainage were calculated by using data from the soil profile as related to physical characteristics of the site root zone, hydraulic conductivity, volumetric water content and potential hydraulic gradient. Mean annual evapotranspiration was 783 mm year–1 and annual through drainage below the root zone was 14% (162 mm year–1) of the gross rainfall. This drainage recharged the 42% of the annual saturation deficit of the water table. Similar mean annual evapotranspiration (770 mm year–1) was also calculated by using the water balance components. The mean daily coupling omega factor () between the grove canopy and the surrounding atmosphere indicated that a high degree of coupling (=0.14±0.16) occurs in the grove and evapotranspiration was mainly controlled by surface conductance. As the dry season proceeded, the soil saturation deficit () increased rapidly resulting in a threshold surface conductance (0.030–0.005 m s–1) for ranging from 0.05 to 0.10. Hypotheses to explain the omnipresence of perennial species in the wide range of physical conditions in neotropical savannas are discussed.  相似文献   
8.
Pine barrens are open‐canopy ecological communities once prevalent on sandy soils across the northern Great Lakes Region of the United States and Canada, though fire suppression and plantation forestry have now reduced them to a few isolated areas. Efforts to restore pine barrens are underway on some public lands, but lack of knowledge on the social and ecological issues and challenges that affect these projects impedes fuller progress. As a precursor to designing a public preference survey for pine barrens restoration, we sought input from those with expert knowledge about pine barrens. Using a three‐round modified Delphi survey, forest land managers and researchers identified the key characteristics of pine barrens and important current and future management challenges. Key characteristics were related to fire, landscape structure, plant and animal species, soils, and social themes. Current and future challenges were related to landscape, invasive species, social, economic, climate change, and science themes. Four social issues (education, fire acceptance, fire risk, aesthetics) were rated among the top current challenges but none of them maintained prominence as future challenges. Potential explanations for this shift are that the experts felt these social concerns would be resolved in time or that other issues, such as development pressures and budgets for carrying out restoration, would become greater future challenges. Our approach can be used by managers and researchers to better understand the ecosystems they seek to restore and to communicate with public stakeholders about restoration efforts.  相似文献   
9.
Although biological conservation has traditionally focused on the protection of pristine areas, it is becoming increasingly evident that efforts should also be made toward the maintenance of biological diversity in human‐managed ecosystems. We evaluated the potential role of scattered, remnant trees in enhancing ant diversity in agricultural lands within a biodiversity hotspot, namely the Cerrado savannas of central Brazil. Ant collections were performed in, beneath, and away from the crowns of a native tree species growing in planted pastures, soy fields, and in small (<400 ha) savanna reserves. Significantly more ant species were found beneath than 30 m away from scattered trees. The magnitude of this effect was similar in soy fields and in pastures at all scales of our analyses, except at the landscape scale where the effect was comparatively greater in soy fields. Most of the species that occurred more frequently beneath than away from trees nest on ground, indicating that the conservation value of scattered trees goes beyond the mere protection of arboreal ant species. Soy plantations presented a particular species‐poor ground‐dwelling fauna when compared with savannas, whereas differences in the number and composition of arboreal species were less marked. In contrast, the diversity of arboreal‐ and ground‐dwelling ants recorded in and beneath pasture trees was nearly as high as the one found in savannas. It is suggested that pasture trees can have an important value for ant conservation off reserves, particularly in regions where most of the native vegetation has already been cleared.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号