首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The nature of spatial autocorrelation of biota may reveal much about underlying ecological and biological factors responsible for producing those patterns, especially dispersal processes (drift, adult flight, etc.). We report here on assemblage‐level autocorrelation in the benthic‐invertebrate assemblages (retained in sieves of 300 µm mesh) of riffles in two adjacent, relatively pristine rivers in southeastern Victoria, Australia (40‐km reaches of the Wellington and Wonnangatta Rivers). These are related to patterns of autocorrelation in physical and catchment conditions (‘environmental variables’) in the vicinity of the sampling points. Both the invertebrate assemblages and environmental variables were autocorrelated at small scales (= 8 km) in the Wellington River in one of the sampling years (1996). Dissimilarities of invertebrate assemblages were correlated with dissimilarities of environmental variables in both sampling years (1996 and 1997) in that river. Environmental variables were autocorrelated in the Wonnangatta River, but this was not expressed as autocorrelation in the assemblages of invertebrates, which were not autocorrelated at any scale studied. Individual environmental variables showed different spatial patterns between the two rivers. These results suggest that individual rivers have their own idiosyncratic patterns and one cannot assume that even similar, geographically adjacent rivers will have the same patterns, which is a difficulty for ecological assessment and restoration.  相似文献   
2.
In this study, we analysed the decomposition of trout carcasses in a low-order Apennine stream, with the aim to investigate the mass loss rate in a Mediterranean lotic system, and to examine the influence of microhabitats on the invertebrates colonising fish carcasses. In May 2003, we put 56 dead rainbow trout (Oncorhynchus mykiss) in the stream, placing seven sets (four trout each) in both riffle and pool habitats. At four dates, we removed one trout per set to measure its dry mass and determine the associated macroinvertebrate assemblage. Fifty-eight macroinvertebrate taxa colonised the carcasses, with significant differences between the erosive and depositional microhabitats. Riffle trouts hosted richer and denser colonist communities than pool trouts. Chironomidae, Serratella ignita, Habrophlebia sp., Dugesia sp. and Protonemura sp. were the five most abundant taxa. Decomposition was initially very rapid in both environments and then tapered off over time. The mass loss rate was higher (k= –0.057 day–1) than that found in other studies. Higher Mediterranean temperatures probably increase the process. Although we found no significant difference between riffles and pools, mass loss was more regular in erosive habitats, underlining the importance of local, small-scale conditions. In small, low-order, heterotrophic streams, fish carcasses represent an important resource and shelter for rich and diversified invertebrate assemblages.  相似文献   
3.
Boyero  Luz  Bosch  Jaime 《Hydrobiologia》2004,524(1):125-132
In a tropical stream (at the Soberaní;a National Park, Panama), different environmental factors were quantified in riffle habitats (water characteristics: velocity, depth, turbulence, and direction; stone characteristics: surface area, sphericity, and degree of burial; and others: substrate type, and canopy cover). Characteristics of macroinvertebrate assemblages (mean density of individuals, mean taxon richness, and cumulative taxon richness in three stones at each riffle) were related to both mean values and variability of these environmental factors at riffle scale. Macroinvertebrate density was higher in shallow, fast flowing, stony riffles, with low variability in dominant substrate type. Taxon richness was also higher in shallow riffles with loose, not buried stones, and water direction more or less parallel to the bank. Environmental variability resulted as important as mean values of environmental factors to explain variation in macroinvertebrate assemblages. This is the first study, to our knowledge, that quantifies substratum variability and demonstrates its influence on macroinvertebrate assemblages in a tropical stream.  相似文献   
4.
Fyke nets were used to sample longfin eels Anguilla die.enbachii in fourth order stream sites with contrasting riparian land use (native tussock, exotic pasture and pasture plus willows Salix spp.) in Lee Stream, a tributary of the Taieri River, New Zealand. Total lengths (LT) of longfin eels from locations inaccessible to eel fishers were normally distributed whereas those from accessible locations had a non-normal, positively skewed distribution. Mean LT and body condition were higher in inaccessible than accessible sites, consistent with considerable fishing exploitation in the latter. Mean LT of the fish was greatest in pasture, intermediate in willow and smallest in tussock sites. Larger longfin eels (≥535 mm) were associated with a riffle-type habitat consisting of shallow, faster-flowing water with coarse, variable sediment and were taken farther from cover. In contrast, smaller longfin eels were associated with a pool-type habitat consisting of slower-flowing, deeper water, with fine, homogenous sediment and were captured closer to cover. This pattern of habitat use differed from some previous reports and probably reflects differences in methodology: fyke nets set over 48 h to sample actively moving longfin eels compared to daytime electric fishing, which samples longfin eels that are more likely to be at rest.  相似文献   
5.
6.
1. Floods and low flows are hydrological events that influence river ecosystems, but few studies have compared their relative importance in structuring invertebrate communities. Invertebrates were sampled in riffles and runs at eight sites along 40 km of a New Zealand gravel‐bed river every 1–3 months over 2.5 years, during which time a number of large flood and low flow events occurred. Flows were high in winter and spring, and low in summer and autumn. Four flow‐related variables were calculated from hydrological data: flow on the day of sampling (Qsample), maximum and minimum flow between successive samples (Qmax and Qmin, respectively), and the number of days since the last bed‐moving flood (Ndays). 2. The invertebrate community was summarised by relative densities of the 19 most abundant taxa and four biotic metrics [total abundance, taxon richness, the number of Ephemeroptera, Plecoptera and Trichoptera taxa (i.e. EPT richness), and per cent EPT]. Invertebrate density fluctuated greatly, and was high in summer and autumn, and low during winter and spring. Stepwise multiple regression (SMR) analysis was used to investigate relationships between the invertebrate community and season, flow, habitat and water temperature. 3. Seasonal variables were included in almost 50% of the SMR models, while flow‐related variables were included in >75% of models. Densities of many taxa were negatively correlated to Qmin and Qmax, and positively correlated to Ndays, suggesting that while high flows reduced invertebrate densities, densities recovered with increasing time following a flood. Although season and flow were confounded in this study, many of the taxa analysed display little seasonal variation in abundance, suggesting that flow‐related variables were more important in structuring communities than seasonal changes in density associated with life‐cycles. 4. Five discrete flood and low flow events were identified and changes to invertebrate communities before and after these events examined. Invertebrate densities decreased more commonly after floods than after low flows, and there was a significant positive relationship between the number of taxa showing reductions in density and flood magnitude. Densities of most invertebrates either remained unchanged, or increased after low flow events, except for four taxa whose densities declined after a very long period (up to 9 months) of low flow. This decline was attributed to autogenic sloughing of thick periphyton communities and subsequent loss of habitat for these taxa. 5. Invertebrate communities changed more after floods and the degree of change was proportional to flood magnitude. Community similarity increased with increasing time since the last disturbance, suggesting that the longer stable flows lasted, the less the community changed. These results suggest that invertebrate communities in the Waipara River were controlled by both floods and low flows, but that the relative effects of floods were greater than even extended periods of extreme low flow. 6. Hydraulic conditions in riffles and runs were measured throughout the study. Riffles had consistently faster velocities, but were shallower and narrower than runs at all measured flows. Invertebrate density in riffles was expressed as a percentage of total density and regressed against the flow‐related variables to see whether invertebrate locations changed according to flow. Significant negative relationships were observed between the per cent density of common taxa in riffles and Qsample, Qmax and Qmin. This result suggests either that these animals actively drifted into areas of faster velocity during low flows, or that their densities within riffles increased as the width of these habitats declined.  相似文献   
7.
1. The influence of hydraulic conditions on the spatial distribution of macroinvertebrate assemblages was investigated in three riffles in a perennial Australian river. 2. Velocity, depth and variability of substrate roughness were measured at each of 56 macroinvertebrate sampling locations. Complex hydraulic variables (roughness Reynolds number, shear velocity, Froude number) were calculated from combinations of two or three of the directly measured variables. The biological significance of directly measured and complex hydraulic variables was determined by a combination of univariate and multivariate statistical procedures. 3. Macroinvertebrate abundance, number of taxa and community composition were significantly different between the identified roughness Reynolds number, Froude number, velocity and shear velocity microhabitats throughout the studied riffles. 4. Regression analysis showed macroinvertebrate abundance and number of taxa were negatively related to roughness Reynolds number, shear velocity, velocity and Froude number. Depth was negatively related to abundance. In general, the majority of the macroinvertebrate community preferred the areas of riffles with the lowest near‐bed turbulence. 5. Roughness Reynolds number explained more of the spatial variation in invertebrate abundance, number of taxa and community composition than the other hydraulic variables, either directly measured or calculated. Of the directly measured variables, velocity had the greatest explanatory power, which was marginally less than roughness Reynolds number and shear velocity. 6. This study demonstrated that small‐scale differences in hydraulic conditions created by combinations of velocity, depth and substrate roughness have an important role in the spatial distribution of macroinvertebrate assemblages in riffle habitats.  相似文献   
8.
Habitat preference and diet of 0+ barbel were studied both on a meso- and a microhabitat scale in the River Sieg (Germany) between May 1993 and January 1995. Changes in mesohabitat use were observed. Barbel moved from shallow bays (larvae and step 1 juveniles) to gravel banks, and subsequently, to riffles (step 2 juveniles). Size-dependent shifts in microhabitat-use were observed during the second juvenile step. These juveniles left the shoreline and preferred microhabitats with stronger current velocities. 0+ barbel in riffles fed on Chironomidae and Ephemeroptera. No remarkable shifts in diet were detected between larvae and juveniles. We suggest that the observed ontogenetic shifts to habitats with high food supply and low predation pressure might contribute to the high abundances of barbel in the River Sieg.  相似文献   
9.
Patterns of spatial autocorrelation of biota may reveal much about underlying ecological and biological forces responsible for generating the patterns. Operationally, ecological work and many applied problems (e.g., impact detection, ecosystem health assessment using reference sites) require statistical knowledge of autocorrelation patterns. Here, we report on assemblage-level autocorrelation in the benthic-invertebrate assemblages of riffles in two adjacent, relatively pristine rivers in south-eastern Victoria, Australia (40 km reaches of the Wellington and Wonnangatta rivers). The assemblages of the Wellington River were strongly autocorrelated, but those of the Wonnangatta River showed a distance-independent pattern. There was no effect of taxonomic resolution, rarity protocols or whole-assemblage surrogates on the inferred levels of autocorrelation. We conclude that there is little evidence that one can assume the pattern of spatial relationships among invertebrate faunas within a river, and this probably holds true for the usual set of taxonomic resolutions and subsets used to discern changes wrought by human impacts.  相似文献   
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号