首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
  2022年   1篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2009年   2篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2002年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有27条查询结果,搜索用时 109 毫秒
1.
Summary The biosynthesis of rhodanese was studied in human hepatoma cell lines by immunoblotting and pulselabeling experiments using polyclonal antibodies raised against the bovine liver enzyme. Rhodanese, partially purified from human liver, showed an apparent molecular weight of 33,000 daltons, coincident with that of rhodanese from Hep 3B cells. After pulse labeling of Hep 3B cells both at 37°C and 25°C, rhodanese in the cytosol fraction exhibited the same molecular weight as the enzyme isolated from the particulate fraction containing mitochondria. Moreover, newly synthesized rhodanese from total Hep 3B RNA translation products showed the same electrophoretic mobility as rhodanese from Hep 3B cells. These results suggest that rhodanese, unlike most mitochondrial proteins, is not synthesized as a higher molecular weight precursor.  相似文献   
2.
The NADH: nitrate reductase from durum wheat leaves was inactivated by cyanide and its activity restored by thiosulphate and beef kidney rhodanese. Rhodanese and thiosulphate, added to NADH-nitrate reductase before cyanide treatment protected NADH-nitrate reductase activity. No oxidizing agent was required for the protection or restoration of cyanide treated NADH-nitrate reductase.  相似文献   
3.
The biosynthesis of many sulfur-containing molecules depends on cysteine as a sulfur source. Both the cysteine desulfurase (CD) and rhodanese (Rhd) domain–containing protein families participate in the trafficking of sulfur for various metabolic pathways in bacteria and human, but their connection is not yet described in plants. The existence of natural chimeric proteins containing both CD and Rhd domains in specific bacterial genera, however, suggests a general interaction between these proteins. We report here the biochemical relationships between two cytosolic proteins from Arabidopsis thaliana, a Rhd domain–containing protein, the sulfurtransferase 18 (STR18), and a CD isoform referred to as ABA3, and compare these biochemical features to those of a natural CD–Rhd fusion protein from the bacterium Pseudorhodoferax sp. We observed that the bacterial enzyme is bifunctional exhibiting both CD and STR activities using l-cysteine and thiosulfate as sulfur donors but preferentially using l-cysteine to catalyze transpersulfidation reactions. In vitro activity assays and mass spectrometry analyses revealed that STR18 stimulates the CD activity of ABA3 by reducing the intermediate persulfide on its catalytic cysteine, thereby accelerating the overall transfer reaction. We also show that both proteins interact in planta and form an efficient sulfur relay system, whereby STR18 catalyzes transpersulfidation reactions from ABA3 to the model acceptor protein roGFP2. In conclusion, the ABA3–STR18 couple likely represents an uncharacterized pathway of sulfur trafficking in the cytosol of plant cells, independent of ABA3 function in molybdenum cofactor maturation.  相似文献   
4.
Rhodanese is a component of the mitochondrial H2S oxidation pathway. Rhodanese catalyzes the transfer of sulfane sulfur from glutathione persulfide (GSSH) to sulfite generating thiosulfate and from thiosulfate to cyanide generating thiocyanate. Two polymorphic variations have been identified in the rhodanese coding sequence in the French Caucasian population. The first, 306A→C, has an allelic frequency of 1% and results in an E102D substitution in the encoded protein. The second polymorphism, 853C→G, has an allelic frequency of 5% and leads to a P285A substitution. In this study, we have examined differences in the stability between wild-type rhodanese and the E102D and P285A variants and in the kinetics of the sulfur transfer reactions. The Asp-102 and Ala-285 variants are more stable than wild-type rhodanese and exhibit kcat/Km,CN values that are 17- and 1.6-fold higher, respectively. All three rhodanese forms preferentially catalyze sulfur transfer from GSSH to sulfite, generating thiosulfate and glutathione. The kcat/Km,sulfite values for the variants in the sulfur transfer reaction from GSSH to sulfite were 1.6- (Asp-102) and 4-fold (Ala-285) lower than for wild-type rhodanese, whereas the kcat/Km,GSSH values were similar for all three enzymes. Thiosulfate-dependent H2S production in murine liver lysate is low, consistent with a role for rhodanese in sulfide oxidation. Our studies show that polymorphic variations that are distant from the active site differentially modulate the sulfurtransferase activity of human rhodanese to cyanide versus sulfite and might be important in differences in susceptibility to diseases where rhodanese dysfunction has been implicated, e.g. inflammatory bowel diseases.  相似文献   
5.
The three-dimensional structure of the rhodanese homology domain At4g01050(175-195) from Arabidopsis thaliana has been determined by solution nuclear magnetic resonance methods based on 3043 upper distance limits derived from NOE intensities measured in three-dimensional NOESY spectra. The structure shows a backbone root mean square deviation to the mean coordinates of 0.43 A for the structured residues 7-125. The fold consists of a central parallel beta-sheet with five strands in the order 1-5-4-2-3 and arranged in the conventional counterclockwise twist, and helices packing against each side of the beta-sheet. Comparison with the sequences of other proteins with a rhodanese homology domain in Arabidopsis thaliana indicated residues that could play an important role in the scaffold of the rhodanese homology domain. Finally, a three-dimensional structure comparison of the present noncatalytic rhodanese homology domain with the noncatalytic rhodanese domains of sulfurtransferases from other organisms discloses differences in the length and conformation of loops that could throw light on the role of the noncatalytic rhodanese domain in sulfurtransferases.  相似文献   
6.
7.
In two previous studies, we identified compound 1 as a moderate GroEL/ES inhibitor with weak to moderate antibacterial activity against Gram-positive and Gram-negative bacteria including Bacillus subtilis, methicillin-resistant Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, and SM101 Escherichia coli (which has a compromised lipopolysaccharide biosynthetic pathway making bacteria more permeable to drugs). Extending from those studies, we developed two series of analogs with key substructures resembling those of known antibacterials, nitroxoline (hydroxyquinoline moiety) and nifuroxazide/nitrofurantoin (bis-cyclic-N-acylhydrazone scaffolds). Through biochemical and cell-based assays, we identified potent GroEL/ES inhibitors that selectively blocked E. faecium, S. aureus, and E. coli proliferation with low cytotoxicity to human colon and intestine cells in vitro. Initially, only the hydroxyquinoline-bearing analogs were found to be potent inhibitors in our GroEL/ES-mediated substrate refolding assays; however, subsequent testing in the presence of an E. coli nitroreductase (NfsB) in situ indicated that metabolites of the nitrofuran-bearing analogs were potent GroEL/ES inhibitor pro-drugs. Consequently, this study has identified a new target of nitrofuran-containing drugs, and is the first reported instance of such a unique class of GroEL/ES chaperonin inhibitors. The intriguing results presented herein provide impetus for expanded studies to validate inhibitor mechanisms and optimize this antibacterial class using the respective GroEL/ES chaperonin systems and nitroreductases from E. coli and the ESKAPE bacteria.  相似文献   
8.
Energetics of charge-charge interactions in proteins   总被引:21,自引:0,他引:21  
M K Gilson  B H Honig 《Proteins》1988,3(1):32-52
Electrostatic interactions between pairs of atoms in proteins are calculated with a model based on the linearized Poisson-Boltzmann equation. The equation is solved accurately by a method that takes into account the detailed shape of the protein. This paper presents applications to several systems. Experimental data for the interaction of ionized residues with an active site histidine in subtilisin BPN' allow the model to be tested, using various assumptions for the electrical properties of the protein and solvent. The electrostatic stabilization of the active site thiolate of rhodanese is analyzed, with attention to the influence of alpha-helices. Finally, relationships between electrostatic potential and charge-charge distance are reported for large and small globular proteins. The above results are compared with those of simpler electrostatic models, including Coulomb's law with both a distance-dependent dielectric constant (epsilon = R) and a fixed dielectric constant (epsilon = 2), and Tanford-Kirkwood theory. The primary conclusions are as follows: 1) The Poisson-Boltzmann model agrees with the subtilisin data over a range of ionic strengths; 2) two alpha-helices generate a large potential in the active site of rhodanese; 3) epsilon = R overestimates weak electrostatic interactions but yields relatively good results for strong ones; 4) Tanford-Kirkwood theory is a useful approximation to detailed solutions of the linearized Poisson-Boltzmann equation in globular proteins; and 5) the modified Tanford-Kirkwood theory over-screens the measured electrostatic interactions in subtilisin.  相似文献   
9.
Rhodaneses/sulfurtransferases are ubiquitous enzymes that catalyze the transfer of sulfane sulfur from a donor molecule to a thiophilic acceptor via an active site cysteine that is modified to a persulfide during the reaction. Here, we present the first crystal structure of a triple‐domain rhodanese‐like protein, namely YnjE from Escherichia coli, in two states where its active site cysteine is either unmodified or present as a persulfide. Compared to well‐characterized tandem domain rhodaneses, which are composed of one inactive and one active domain, YnjE contains an extra N‐terminal inactive rhodanese‐like domain. Phylogenetic analysis reveals that YnjE triple‐domain homologs can be found in a variety of other γ‐proteobacteria, in addition, some single‐, tandem‐, four and even six‐domain variants exist. All YnjE rhodaneses are characterized by a highly conserved active site loop (CGTGWR) and evolved independently from other rhodaneses, thus forming their own subfamily. On the basis of structural comparisons with other rhodaneses and kinetic studies, YnjE, which is more similar to thiosulfate:cyanide sulfurtransferases than to 3‐mercaptopyruvate:cyanide sulfurtransferases, has a different substrate specificity that depends not only on the composition of the active site loop with the catalytic cysteine at the first position but also on the surrounding residues. In vitro YnjE can be efficiently persulfurated by the cysteine desulfurase IscS. The catalytic site is located within an elongated cleft, formed by the central and C‐terminal domain and is lined by bulky hydrophobic residues with the catalytic active cysteine largely shielded from the solvent.  相似文献   
10.
The arsenate/antimonate reductase LmACR2 has been recently identified in the genome of Leishmania major. Besides displaying phosphatase activity in vitro, this enzyme is able to reduce both As(V) and Sb(V) to their respective trivalent forms and is involved in the activation of Pentostan, a drug containing Sb(V) used in the treatment of leishmaniasis. LmACR2 displays sequence and functional similarity with the arsenate reductase ScACR2 from Saccharomyces cerevisiae, and both proteins are homologous to the catalytic domain of Cdc25 phosphatases, which, in turn, belong to the rhodanese/Cdc25 phosphatase superfamily. In this work, the three-dimensional structure of LmACR2 has been determined with crystallographic methods and refined at 2.15 Å resolution. The protein structure maintains the overall rhodanese fold, but substantial modifications are observed in secondary structure position and length. However, the conformation of the active-site loop and the position of the catalytic residue Cys75 are unchanged with respect to the Cdc25 phosphatases. From an evolutionary viewpoint, LmACR2 and the related arsenate reductases form, together with the known Cdc25 phosphatases, a well-defined subfamily of the rhodanese/Cdc25 phosphatase superfamily, characterized by a 7-amino-acid-long active-site loop that is able to selectively bind substrates containing phosphorous, arsenic, or antinomy. The evolutionary tree obtained for these proteins shows that, besides the active-site motif CE[F/Y]SXXR that characterizes Cdc25 phosphatase, the novel CALSQ[Q/V]R motif is also conserved in sequences from fungi and plants. Similar to Cdc25 phosphatase, these proteins are likely involved in cell cycle control. The active-site composition of LmACR2 (CAQSLVR) does not belong to either group, but gives to the enzyme a bifunctional activity of both phosphatase and As/Sb reductase. The subtle dependence of substrate specificity on the amino acid composition of the active-site loop displays the versatility of the ubiquitous rhodanese domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号