首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2013年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Callus was induced from mature leaf lamina, petiole, stem, and main and branch root of Panax ginseng and maintained under different nutrient and light conditions. Heterogenous callus cultures differentiated organoids and/or embryoids. Embryoids that arose from callus cultures of leaf origin germinated into shoots. The occurrence of the early stages of different regenerated structures was proved on histological level.  相似文献   
2.
Action potentials induced by electrical stimuli were recorded from the thalli of tfie liverwort, Conocephalum conicum L. An analysis of an equivalent circuit of Conocephalum conicum thallus in situ has shown that the multiphasic time course of extracellular recordings is caused by a branching of extracellular conduction layers and by an overlapping of action currents. As compared to the velocity of excitation propagation without short-circuiting, more than 10 times higher rates of action potential conduction have been recorded when the plants are immersed in a low resistaace solution. Furthermore, simultaneous extra- and intracellular recordings from thalli in situ are presented.  相似文献   
3.
Sechs Spezies der Gattung Chara von zehn Standorten akkumulieren Barium, Schwefel und (in einigen Fällen auch) Strontium in den Statolithen-Kompartimenten ihrer Rhizoide. Hinweise auf Fundorte von Chara verdanken wir Herrn Prof. Dr. H. Fischer , Bonn, Frau Dipl.-Biol. U. Friedrich und Herrn Dipl.-Biol. P. Gerstberger , Bonn, Herrn Prof. Dr. R. Jarosch , Salzburg, sowie Friedrich (1975), Krause (1969) und Schauer (1979). Herr Dr. M. Boecker , Bonn, hat freundlicherweise die Determination der Spezies übernommen. Frau G. Hampel danken wir für Hilfe bei der Präparation. Mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   
4.
Braun M  Sievers A 《Protoplasma》1993,174(1-2):50-61
Summary The actin cytoskeleton is involved in the positioning of statoliths in tip growingChara rhizoids. The balance between the acropetally acting gravity force and the basipetally acting net out-come of cytoskeletal force results in the dynamically stable position of the statoliths 10–30 m above the cell tip. A change of the direction and/or the amount of one of these forces in a vertically growing rhizoid results in a dislocation of statoliths. Centrifugation was used as a tool to study the characteristics of the interaction between statoliths and microfilaments (MFs). Acropetal and basipetal accelerations up to 6.5 g were applied with the newly constructed slow-rotating-centrifuge-microscope (NIZEMI). Higher accelerations were applied by means of a conventional centrifuge, namely acropetally 10–200 g and basipetally 10–70 g. During acropetal accelerations (1.4–6 g), statoliths were displaced to a new stable position nearer to the cell vertex (12–6.5 m distance to the apical cell wall, respectively), but they did not sediment on the apical cell wall. The original position of the statoliths was reestablished within 30 s after centrifugation. Sedimentation of statoliths and reduction of the growth rates of the rhizoids were observed during acropetal accelerations higher than 50 g. When not only the amount but also the direction of the acceleration were changed in comparison to the natural condition, i.e., during basipetal accelerations (1.0–6.5 g), statoliths were displaced into the subapical zone (up to 90 m distance to the apical cell wall); after 15–20 min the retransport of statoliths to the apex against the direction of acceleration started. Finally, the natural position in the tip was reestablished against the direction of continuous centrifugation. Retransport was observed during accelerations up to 70 g. Under the 1 g condition that followed the retransported statoliths showed an up to 5-fold increase in sedimentation time onto the lateral cell wall when placed horizontally. During basipetal centrifugations 70 g all statoliths entered the basal vacuolar part of the rhizoid where they were cotransported in the streaming cytoplasm. It is concluded that the MF system is able to adapt to higher mass accelerations and that the MF system of the polarly growing rhizoid is polarly organized.Abbreviations g gravitational acceleration (9.81 m/s2) - MF microfilament - NIZEMI Niedergeschwindigkeits-Zentrifugen-Mikroskop (slow-rotating-centrifuge-microscope)  相似文献   
5.
Hejnowicz Z  Sievers A 《Protoplasma》1981,108(1-2):117-137
Summary The behavior of statoliths in rhizoids differently oriented with respect to the gravity vector indicates that there are cytoskeleton elements which exert forces on the statoliths, mostly in the longitudinal directions. Compared to the sum of the forces acting on a statolith, the gravitational force is a relatively small component,i.e., less than 1/5 of the cytoskeleton force. The balance is disturbed by displacing the rhizoid from the normal vertical orientation. It is also reversibly disturbed by cytochalasin B such that some statoliths move against the gravity force. Phalloidin stabilizes the position of the statoliths against cytochalasin B. We infer that microfilaments are involved in controlling the position of statoliths, and that there is a considerable tension on these microfilaments. The vibration frequency of the microfilaments corresponding to this tension is in the ultrasonic range.Visiting Professor on a grant from Deutsche Forschungsgemeinschaft.  相似文献   
6.
利用回转器重现了在TEXUS火箭抛物线飞行的微重力实验中轮藻假根内平衡石向假根基部方向的运动。在快速回转器上回转15 min时,假根中的平衡石复合体中心离假根顶端的距离比在原来沿重力方向生长的假根中的距离增加了60%。细胞松弛素D的实验证实平衡石的这种运动是和肌动蛋白丝相关,而且在重力场中作用于平衡石的向基力也是肌动蛋白丝产生的。因此回转器和细胞松弛素D的实验证实了在地球上,平衡石的位置取决于作用方向相反的重力和肌动蛋白丝作用力的动态平衡的假说。然后在快速回转器上,平衡石中心在一个新的位置上维持了30 min左右的稳定,也就是出现了一个新的动态平衡状态。这一新的状态是在原先的向着假根顶端的重力和向着假根基部的肌动蛋白丝作用力的平衡在回转器上被打破后再经约有15 min时达到的。更进一步的快速回转器实验还展示了可能因平衡石位置的这一变化而启动的肌动蛋白丝的再组织和由此产生的平衡石向假根顶端方向再转运的过程。快速和慢速回转器实验在这里的结果有差异,推测是和回转器上颗粒的振幅随回转器转速的增加而减小有关。加之,轮藻假根的单细胞性质,因此在假根处于回转轴上时,快速回转器是更适合这项模拟失重的研究。总之,在失重条件下平衡石和肌动蛋白丝的关系是可以利用回转器来研究的。  相似文献   
7.
The organization of the microtubule (MT) and actin microfilament (MF) cytoskeleton of tip-growing rhizoids and protonemata of characean green algae was examined by confocal laser scanning microscopy. This analysis included microinjection of fluorescent tubulin and phallotoxins into living cells, as well as immunofluorescence labeling of fixed material and fluorescent phallotoxin labeling of unfixed material. Although the morphologically very similar positively gravitropic (downward growing) rhizoids and negatively gravitropic (upward growing) protonemata show opposite gravitropic responses, no differences were detected in the extensive three-dimensional distribution of actin MFs and MTs in both cell types. Tubulin microinjection revealed that in contrast to internodal cells, fluorescent tubulin incorporated very slowly into the MT arrays of rhizoids, suggesting that MT dynamics are very different in tip-growing and diffusely expanding cells. Microtubules assembled from multiple sites at the plasma membrane in the basal zone, and a dense subapical array emerged from a diffuse nucleation centre on the basal side of the nuclear envelope. Immunofluorescence confirmed these distribution patterns but revealed more extensive MT arrays. In the basal zone, short branching clusters of MTs form two cortical hemicylinders. Subapical, axially oriented MTs are distributed in equal density throughout the peripheral and inner cytoplasm and are closely associated with subapical organelles. Microtubules, however, are completely absent from the apical zones of rhizoids and protonemata. Actin MFs were found in all zones of rhizoids and protonemata including the apex. Two files of axially oriented bundles of subcortical actin MFs and ring-like actin structures in the streaming endoplasm of rhizoids were detected in the basal zones by microinjection or rhodamine-phalloidin labeling. The subapical zone contains a dense array of mainly axially oriented actin MFs that co-distribute with the subapical MT array. In the apex, actin MFs form thicker bundles that converge into a remarkably distinct actin patch in the apical dome, whose position coincides with the position of the endoplasmic reticulum aggregate in the centre of the Spitzenk?rper. Actin MFs radiate from the actin patch towards the apical membrane. Together with results from previous inhibitor studies (Braun and Sievers, 1994, Eur J Cell Biol 63: 289–298), these results suggest that MTs have a stabilizing function in maintaining the polar cytoplasmic and cytoskeletal organization. The motile processes, however, are mediated by actin. In particular, the actin cytoskeleton appears to be involved in the structural and functional organization of the Spitzenk?rper and thus is responsible for controlling cell shape and growth direction. Despite the similar structural arrangements of the actin cytoskeleton, major differences in the function of actin MFs have been observed in rhizoids and protonemata. Since actin MFs are more directly involved in the gravitropic response of protonemata than of rhizoids, the opposite gravitropism in the two cell types seems to be based mainly on different properties and activities of the actin cytoskeleton. Received: 14 September 1997 / Accepted: 16 October 1997  相似文献   
8.
9.
Regeneration of bog liverworts   总被引:5,自引:3,他引:2  
  相似文献   
10.
《Journal of bryology》2013,35(2):239-242
Abstract

Six bryophyte species were investigated: Plagiochila spinulosa, Hylocomium splendens, Scorpiurium circinatum, Tortula ruraliformis, Rhacomitrium aquaticum and Andreaea rothii. Of these, all except A. rothii showed clear evidence of seasonal variation in desiccation tolerance, as measured by net assimilation following 24 h remoistening.

(2) In general these species showed low desiccation tolerance in autumn (October) and winter (January) and increased tolerance in spring and summer. Hylocomium splendens was a partial exception in showing relatively high tolerance in January and little change from then until July.

(3) On the whole, the seasonal pattern of desiccation response accords well with what might be expected from conditions in the habitats of the plants. The results are briefly discussed in relation to distribution of rainfall and some microenvironmental factors, and compared with some data from the literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号