首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  国内免费   2篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2008年   2篇
  2003年   2篇
  2002年   1篇
  1997年   1篇
  1994年   1篇
  1988年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
飞蝗复眼生理和结构上的节律变化   总被引:7,自引:3,他引:4  
采用细胞内记录和光镜方法研究了飞蝗(Locusta migratoria)夜间和日间在暗适应和明适应状态下小网膜细胞角敏感度以及晶锥和小网膜细胞之间区域结构上的变化.结果表明小网膜细胞角敏感度的变化不仅仅由于晶锥周围主色素细胞色素颗粒的移动,而且也由于小眼感杆束结构上的节律变化.  相似文献   
2.
Investigation of phototransduction in invertebrate photoreceptors has revealed many physiological and biochemical features of fundamental biological importance. Nonetheless, no complete picture of phototransduction has yet emerged. In most known cases, invertebrate phototransduction involves polyphosphoinositide and cyclic GMP (cGMP) intracellular biochemical signaling pathways leading to opening of plasma membrane ion channels. Excitation is Ca2+-dependent, as are adaptive feedback processes that regulate sensitivity to light. Transduction takes place in specialized subcellular regions, rich in microvilli and closely apposed to submicrovillar membrane systems. Thus, excitation is a highly localized process. This article focuses on the intracellular biochemical signaling pathways and the ion channels involved in invertebrate phototransduction. The coupling of signaling cascades with channel activation is not understood for any invertebrate species. Although photoreceptors have features that are common to most or all known invertebrate species, each species exhibits unique characteristics. Comparative electrophysiological, biochemical, morphological, and molecular biological approaches to studying phototransduction in these species lead to fundamental insights into cellular signaling. Several current controversies and proposed phototransduction models are evaluated.  相似文献   
3.
陈庆霄  花保祯 《昆虫学报》2016,(10):1133-1142
【目的】长翅目(Mecoptera)是全变态类昆虫中唯一在幼虫期具有复眼而无侧单眼的类群,是研究昆虫复眼与侧单眼之间演化关系的理想材料。本研究旨在阐明长翅目幼虫复眼的结构特征,为探讨长翅目幼虫复眼与其他全变态类幼虫侧单眼之间的进化关系提供依据。【方法】本研究运用光学显微镜、扫描和透射电子显微镜技术观察了蝎蛉科(Panorpidae)大双角蝎蛉Dicerapanorpa magna(Chou)幼虫复眼的超微结构,并依据其结构特征对长翅目幼虫复眼在全变态类幼虫侧单眼演化中的意义进行了探讨。【结果】结果表明,大双角蝎蛉幼虫复眼属于并列像眼,由50多个小眼组成。小眼由1个角膜、1个晶体、8个视网膜细胞、2个初级色素细胞和数个次级色素细胞等组成。视网膜细胞分为4个远端细胞和4个近端细胞。远端视网膜细胞的视小杆向上延伸包裹着晶体的基部,使视杆末端呈漏斗状。【结论】分层的视网膜细胞和漏斗状的视杆很可能是长翅目幼虫复眼的共有祖征。这两个特征不存在于长翅目成虫复眼中,但存在于许多渐变态类昆虫中。由此推测,长翅目幼虫复眼可能与渐变态类昆虫的复眼存在同源关系。我们认为,长翅目幼虫独有的复眼很可能是全变态类昆虫的祖征,其他全变态类幼虫的侧单眼可能是由复眼演化来的。  相似文献   
4.
The tool of neurotransplantation has been successfully introduced in the chronobiology of mammals. Grafting of the foetal suprachiasmatic nucleus (SCN) in the IIIrd ventricle of the brain of SCN-lesioned arhythmic rodents restored free-running circadian activity patterns. This ultimately proves the SCN to be the central circadian pacemaker system. However, recovery is not seen in all animals with a surviving SCN implant and the rhythm is usually not as robust as seen for the intact system. Moreover, the grafted foetal SCN has a partially deviant development, whereas the structure-function relationship after restoration of circadian rhythm was reported to differ in the various studies. This has led to two possible mechanisms of graft action: the one a circadian humoral signal diffusing into the SCN-lesioned host brain, and the other a neuritic afferent outgrowth into the brain. There is, moreover, doubt about the integration of the ‘new’ SCN in terms of afferent input. Given the fact that the in situ SCN has an extensive efferent and afferent system in the intact brain, the SCN grafting experiments seem to indicate that only limited aspects of the SCN can drive circadian physiological rhythms. However, on the basis of current knowledge on grafting results the present paper recommends performing more sophisticated SCN grafting experiments to contribute to the knowledge on the SCN clock system.  相似文献   
5.
Abstract. Among malacostracan crustaceans, intracerebral ocelli were first discovered in Isopoda, but they have been more recently reported from a crayfish ( Cherax destructor ) and a sandhopper ( Talitrus saltator ). This electron microscopic study increases the number of crayfish taxa in which intracerebral ocelli are now known to occur by two: Astacidae and Cambaridae. These photoreceptors are always integrated into the anteromedio-dorsal part of the brain and are not visible externally. Each ocellus is made up of 4–5 photoreceptor cells and is characterized by the presence of a fused rhabdom. The occurrence of different kinds of lysosomes in the cytoplasm is indicative of metabolic activity and perhaps membrane turnover. One typical feature of crayfish ocelli is their extraordinary variability in number. This trait is exemplified by individuals of Pacifastacus leniusculus , where as many as 14 ocelli were identified in a single brain. The arrangement of the ocelli is often not symmetrical with regard to the brain's midline and the ocelli always lack dioptric structures. Thus, it is difficult to see how they are involved in image formation. However, further research is needed to determine the precise role of these "hidden" receptors.  相似文献   
6.
The compound eyes of the wingless adults of the Madagascar 'hissing cockroach' Gromphadorhinaportentosa Sachum, 1853 were examined by light and electron microscopy. Each eye contains 2 400-2 500 mostly hexagonal facets. However, irregularities affecting both shape and size of the ommatidia are relatively common, especially towards the margins of the eye. An individual ommatidium of this eucone type of apposition eye contains eight retinula cells, which give rise to a centrally-fused, tiered rhabdom. The distal end of the latter is funnel-shaped and accommodates the proximal end of the cone in its midst, Further below, the rhabdom (then formed by the rhabdomeres of four retinula cells) assumes a squarish profile with microvilli aligned in two directions at right-angle to each other. Cross sections through the proximal regions of the rhabdom display triangular rhabdom outlines and microvilli (belonging to 3-4 retinula cells different from those involved in the squarish more distal rhabdom) that run in three directions inclined to one another by 120°. Overall the organization of the eye conforms to the orthopteroid pattern and particularly closely resembles that of the American cockroach Periplaneta americana. However, since G. portentosa possesses fewer ommatidia, this could be a consequence of its inability to fly. On the other hand, the large size of the facets and the voluminous rhabdoms suggest considerable absolute sensitivity and an ability to detect the plane of linearly polarized light. Based on the pattern of microvillus orientations in combination with the crepuscular lifestyle G. portentosa leads and the habitat it occurs in, the prediction is made that this insect uses its green receptors for e-vector discrimination in the environment of down-welling light that reaches the forest floor.  相似文献   
7.
Summary The retina of the phalangid, Opilio ravennae, consists of retinula cells with distal rhabdomeres, arhabdomeric cells, and sheath cells. The receptive segment of retinula cells shows a clear separation into a Proximal rhabdom, organized into distinct rhabdom units formed by three or four retinula cells, and a Distal rhabdom, consisting of an uniterrupted layer of contiguous rhabdomeres. One of the cells comprising a retinula unit, the so-called distal retinula cell (DRC), has two or three branches that pass laterally alongside the rhabdom, thereby separating the two or three principal retinula cells of a unit. The two morphologically distinct layers of the receptive segment differ with respect to the cellular origin of rhabdomeral microvilli: DRC-branches contribute very few microvilli to the proximal rhabdom and develop extremely large rhabdomeres in the distal rhabdom only, causing the rhabdom units to fuse. Principal retinula cells, on the other hand, comprise the majority of microvilli of the proximal rhabdom, but their rhabdomeres diminish in the distal rhabdom. It is argued that proximal and distal rhabdoms serve different functions in relation to the intensity of incident light.In animals fixed 4 h after sunset, pigment granules retreat from the distal two thirds of the receptive segment. A comparison of retinae of day- and night-adapted animals shows that there is a slight (approximately 15%) increase in the cross-sectional area of rhabdomeral microvilli in dark-adapted animals, which in volume corresponds to the loss of pigment granules from the receptive segment. The length of the receptive segment as well as the pattern and shape of rhabdom units, however, remain unchanged.Each retinula unit is associated with one arhabdomeric cell. Their cell bodies are located close to those of retinula cells, but are much smaller and do not contain pigment granules. The most remarkable feature is a long, slender distal dendrite that extends up to the base of the fused rhabdom where it increases in diameter and develops a number of lateral processes interdigitating with microvilli of the rhabdom. The most distal dendrite portion extends through the center of the fused rhabdom and has again a smooth outline. All dendrites end in the distal third of the proximal rhabdom and are never present in the layer of the contiguous distal rhabdom. Arhabdomeric cells are of essentially the same morphology in day- and night-adapted animals. They are interpreted as photoinsensitive secondary neurons involved in visual information-processing that channel current collected from retinula cells of the proximal rhabdom along the optic nerve. A comparison is made with morphological equivalents of these cells in other chelicerate species.  相似文献   
8.
Observations of the infrared deep pseudopupil, optical determinations of the corneal nodal point, and histological methods were used to relate the visual fields of individual rhabdomeres to the array of ommatidial optical axes in four insects with open rhabdoms: the tenebrionid beetle Zophobas morio, the earwig Forficula auricularia, the crane fly Tipula pruinosa, and the backswimmer Notonecta glauca.The open rhabdoms of all four species have a central pair of rhabdomeres surrounded by six peripheral rhabdomeres. At night, a distal pigment aperture is fully open and the rhabdom receives light over an angle approximately six times the interommatidial angle. Different rhabdomeres within the same ommatidium do not share the same visual axis, and the visual fields of the peripheral rhabdomeres overlap the optical axes of several near-by ommatidia. During the day, the pigment aperture is considerably smaller, and all rhabdomeres share the same visual field of about two interommatidial angles, or less, depending on the degree of light adaptation. The pigment aperture serves two functions: (1) it allows the circadian rhythm to switch between the night and day sampling patterns, and (2) it works as a light driven pupil during the day.Theoretical considerations suggest that, in the night eye, the peripheral retinula cells are involved in neural pooling in the lamina, with asymmetric pooling fields matching the visual fields of the rhabdomeres. Such a system provides high sensitivity for nocturnal vision, and the open rhabdom has the potential of feeding information into parallel spatial channels with different tradeoffs between resolution and sensitivity. Modification of this operational principle to suit a strictly diurnal life, makes the contractile pigment aperture superfluous, and decreasing angular sensitivities together with decreasing pooling fields lead to a neural superposition eye.Abbreviations DPP deep pseudopupil - LMC large monopolar cell  相似文献   
9.
The compound eyes of the wingless adults of the Madagascar ‘hissing cockroach’Gromphadorhina portentosa Sachum, 1853 were examined by light and electron microscopy. Each eye contains 2 400‐2 500 mostly hexagonal facets. However, irregularities affecting both shape and size of the ommatidia are relatively common, especially towards the margins of the eye. An individual ommatidium of this eucone type of apposition eye contains eight retinula cells, which give rise to a centrally‐fused, tiered rhabdom. The distal end of the latter is funnel‐shaped and accommodates the proximal end of the cone in its midst. Further below, the rhabdom (then formed by the rhabdomeres of four retinula cells) assumes a squarish profile with microvilli aligned in two directions at right‐angle to each other. Cross sections through the proximal regions of the rhabdom display triangular rhabdom outlines and microvilli (belonging to 3‐4 retinula cells different from those involved in the squarish more distal rhabdom) that run in three directions inclined to one another by 120°. Overall the organization of the eye conforms to the orthopteroid pattern and particularly closely resembles that of the American cockroach Periplaneta americana. However, since G. portentosa possesses fewer ommatidia, this could be a consequence of its inability to fly. On the other hand, the large size of the facets and the voluminous rhabdoms suggest considerable absolute sensitivity and an ability to detect the plane of linearly polarized light. Based on the pattern of microvillus orientations in combination with the crepuscular lifestyle G. portentosa leads and the habitat it occurs in, the prediction is made that this insect uses its green receptors for e‐vector discrimination in the environment of down‐welling light that reaches the forest floor.  相似文献   
10.
Interspecific variations in rhabdom structure between various oplophorid shrimps are described and the differences are related to the light environment at different depths within the mesopelagic zone. The ultrastructure of the distal rhabdom in these species is described for the first time. Quantitative measurements show that the proportion of the rhabdom layer occupied by the distal rhabdom varies from 3.5-25% in the dorsoventral plane of the eye of Systellaspis debilis. The distal rhabdom occupies less than 1% of the rhabdoms in the eye of Acanthephyra pelagica, where it can only be seen by using the electron microscope. It is suggested that the rhabdoms of those species that remain within the photic zone (such as S. debilis) are adapted to maximize contrast, whereas in those whose depth ranges extend into the aphotic zone (such as A. pelagica) they are adapted for maximum sensitivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号