首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   3篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   5篇
  2005年   1篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1991年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有35条查询结果,搜索用时 93 毫秒
1.
Accumulation evidence shows that β-amyloid (Aβ) is a neurotoxic and accumulation of Aβ is responsible for the pathology of Alzheimer''s disease (AD). However, it is currently not fully understood what makes Aβ toxic and accumulated. Previous studies demonstrate that Aβ is a suitable substrate for glycation, producing one form of the advanced glycation endproducts (AGEs). We speculated that Aβ-AGE formation may exacerbate the neurotoxicity. To explore whether the Aβ-AGE is more toxic than the authentic Aβ and to understand the molecular mechanisms, we synthesized glycated Aβ by incubating Aβ with methylglyoxal (MG) in vitro and identified the formation of glycated Aβ by fluorescence spectrophotometer. Then, we treated the primary hippocampal neurons cultured 8 days in vitro with Aβ-AGE or Aβ for 24 h. We observed that glycation exacerbated neurotoxicity of Aβ with upregulation of receptor for AGE (RAGE) and activation of glycogen synthase kinase-3 (GSK-3), whereas simultaneous application of RAGE antibody or GSK-3 inhibitor reversed the neuronal damages aggravated by glycated Aβ. Thereafter, we found that Aβ is also glycated with an age-dependent elevation of AGEs in Tg2576 mice, whereas inhibition of Aβ-AGE formation by subcutaneously infusion of aminoguanidine for 3 months significantly rescued the early cognitive deficit in mice. Our data reveal for the first time that the glycated Aβ is more toxic. We propose that the glycated Aβ with the altered secondary structure may be a more suitable ligand than Aβ for RAGE and subsequent activation of GSK-3 that can lead to cascade pathologies of AD, therefore glycated Aβ may be a new therapeutic target for AD.  相似文献   
2.
Impaired angiogenesis leads to long-term complications and is a major contributor of the high morbidity in patients with Diabetes Mellitus (DM). Methylglyoxal (MGO) is a glycolysis byproduct that accumulates in DM and is detoxified by the Glyoxalase 1 (Glo1). Several studies suggest that MGO contributes to vascular complications through mechanisms that remain to be elucidated. In this study we have clarified for the first time the molecular mechanism involved in the impairment of angiogenesis induced by MGO accumulation.Angiogenesis was evaluated in mouse aortic endothelial cells isolated from Glo1-knockdown mice (Glo1KD MAECs) and their wild-type littermates (WT MAECs). Reduction in Glo1 expression led to an accumulation of MGO and MGO-modified proteins and impaired angiogenesis of Glo1KD MAECs. Both mRNA and protein levels of the anti-angiogenic HoxA5 gene were increased in Glo1KD MAECs and its silencing improved both their migration and invasion. Nuclear NF-?B-p65 was increased 2.5-fold in the Glo1KD as compared to WT MAECs. Interestingly, NF-?B-p65 binding to HoxA5 promoter was also 2-fold higher in Glo1KD MAECs and positively regulated HoxA5 expression in MAECs. Consistent with these data, both the exposure to a chemical inhibitor of Glo1 “SpBrBzGSHCp2” (GI) and to exogenous MGO led to the impairment of migration and the increase of HoxA5 mRNA and NF-?B-p65 protein levels in microvascular mouse coronary endothelial cells (MCECs).This study demonstrates, for the first time, that MGO accumulation increases the antiangiogenic factor HoxA5 via NF-?B-p65, thereby impairing the angiogenic ability of endothelial cells.  相似文献   
3.
A sex difference in the penetration of selenium into the brain was observed using lipopolysaccharide (LPS)-injected mice. The selenium concentration increased in the brains of sodium selenite-injected LPS-treated female mice, but not males. The selenium concentration peaked when selenite was injected 3 h after the injection of LPS into female mice. In addition, selenium in the brain increased when a dosage of 30 μmol/kg and more of selenite was injected into LPS-treated female mice. Also, the selenium concentration in the brain increased and peaked 2–3 h after selenite injection; 24 h later, the level was similar to the Se-only group. The penetration of selenium into the brain was inhibited by pretreatment with aminoguanidine, an inhibitor of nitric oxide synthetase. From the present results, selenium more easily penetrated into the brains of female mice compared to males after LPS treatment, and nitric oxide may have affected the penetration. However, the sex difference mechanism for selenium penetration needs further investigation.  相似文献   
4.
We investigated the protective role of aminoguanidine (AG) in rat liver injury induced by chronic biliary obstruction. Secondary biliary cirrhosis was induced by bile duct ligation for 14 days. Swiss albino rats were divided into three groups: Common bile duct ligated (CBDL) rats; Group A, CBDL rats treated with AG as Group B and simple laparotomy group known as the Sham group; Group C. Group B received 200 mg/kg of AG intraperitoneally daily throughout 14 days. The present data showed decreased gama glutamyl transferase (GGT), aspartate aminotransferase (AST), bilirubin and alanine aminotransferase (ALT) levels in the AG treated rats, when compared with CBDL rats (p < 0.05). In the AG treated rats, tissue levels of malondialdehyde (MDA) were significantly lower than that in CBDL rats (p < 0.001). Although the levels of glutathione (GSH) in AG treated rats were higher and myeloperoxidase (MPO) were lower than that in CBDL rats, the difference was not statistically significant (p > 0.05). The levels of interleukin-1alpha (IL-1alpha) and tumor necrosis factor-alpha (TNF-alpha) were significantly lower and although the levels of interleukin-6 (IL-6) were lower in AG treated rats than that in CBDL rats, the difference was not statistically significant. Administration of AG in the rats with biliary obstruction resulted in inhibition of ductular proliferation and portal inflammation. The present study demonstrates that intraperitoneal administration of AG in CBDL rats maintains antioxidant defenses, reduces liver oxidative and cytokine damage and ductular proliferation and portal inflammation. This effect of AG may be useful in the preservation of liver injury in cholestasis.  相似文献   
5.
Postoperative intraperitoneal adhesion formation is a major cause of intestinal obstruction, pain and infertility. This experimental study was designed to evaluate the degree of adhesion formation and peritoneal tissue levels of malondialdehyde (MDA), reduced glutathione (GSH) and total nitrite and nitrate (NO) and the effect of aminoguanidine (AG) on these metabolite values after postoperative intraperitoneal adhesion formation in rats. A total of 21 adult male Wistar albino rats were randomly divided into three groups. Control rats were untreated; the AG group received AG 200 mg kg(-1) i.p. for 10 consecutive days intraperitoneally after surgery. The sham group was given 0.9% NaCl. The rats were killed on postoperative day 10. The peritoneal tissues were harvested to determine the tissue levels of MDA, GSH, and NO activity. For light microscopic evaluation, the cecum was removed. Adhesion formation scores in the AG group were significantly lower than those of the control and sham groups (p < 0.017, p < 0.026 respectively). In the AG-treated rats, tissue levels of MDA and NO were significantly lower than in the control group (p < 0.017). The levels of GSH in aminoguanidine-treated rats were significantly higher than those of the control group (p < 0.01). The severity of the inflammation was more prominent in the control group compared with the AG-injected rats. The results demonstrate that in this experimental model, intraperitoneal administration of aminoguanidine decreases the incidence and extent of peritoneal adhesions and causes a decrease in MDA and NO and an increase in GSH values.  相似文献   
6.
Doxorubicin (DOX) is a broad-spectrum anthracycline antibiotic that has cardiotoxicity as a major side effect. One mechanism of this toxicity is believed to involve the reactive oxygen radical species (ROS); these agents likely account for the pathophysiology of DOX-induced cardiomyopathy. Aminoguanidine (AG) is an effective antioxidant and free radical scavenger which has long been known to protect against ROS formation. We investigated the effects of AG on DOX-induced changes in thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) content. The rats were divided into four groups:1) Control; 2) DOX group; injected intraperitoneally (i.p.) with DOX 20 mg/kg in a single dose 3) AG-treated group; injected i.p. in single dose of 20 mg/kg DOX plus 100 mg/kg AG 1 h before the DOX for 3 days, 4) AG group; injected i.p. with AG 100 mg/kg for 3 days. DOX administration to control rats increased TBARS and decreased GSH levels. AG administration before DOX injection caused significant decrease in TBARS and increase in GSH levels in the heart tissue when compared with DOX only. Morphological changes, including severe myocardial fibrosis and inflammatory cell infiltration were clearly observed in the DOX-treated heart. AG reversed the DOX-induced heart damage. Therefore AG could protect the heart tissue against free radical injury. The application of AG during cancer chemotherapy may attenuate tissue damage and improve the therapeutic index of DOX.  相似文献   
7.
Abnormalities of endothelial function have been demonstrated in diabetes and are thought to play a role in the pathogenesis of diabetic complications. The aims of this study were to determine whether aminoguanidine, an inhibitor of glycation, can prevent endothelial and microcirculation abnormalities in a primate model of type 1 diabetes. Male baboons (Papio hamadryas) were assigned to one of the four groups: control, diabetes, control treated with aminoguanidine or diabetes treated with aminoguanidine. Diabetes was induced by streptozocin (60 mg/kg) and treated with once daily injection of insulin. Aminoguanidine was given subcutaneously (10 mg/kg), once a day. Diabetic animals had a mean duration of diabetes of 8.9 +/- 3.4 years and HbA1c of 8.9 +/- 1.1%. Microvascular function was measured by laser Doppler velocimetry, with examination of endothelium-dependent increase in skin blood flow (SkBF) following iontophoresis of acetylcholine (ACh) and endothelium-independent increase in SkBF in response to the nitric oxide (NO) donor sodium nitroprusside (SNP). Multiple regression analysis identified diabetes (P = 0.049) and aminioguanidine treatment (P = 0.026) as significant determinants of ACh response. The diabetic baboons treated with aminoguanidine had less Ach-mediated SkBF response compared with controls (1.39 +/- 0.32 vs. 2.26 +/- 0.61, F = 3.3, P = 0.04), but there was no difference between groups in SkBF response to SNP. We conclude that endothelial dysfunction can be demonstrated in this primate model of type 1 diabetes at a stage when overt diabetic complications are not present. This occurred in the absence of insulin resistance or significant hypercholesterolemia. Administration of aminoguanidine from the onset of diabetes was not able to prevent this abnormality and in fact aggravated the endothelial response. Effects of aminoguanidine on NO synthase may contribute to this phenomenon.  相似文献   
8.
Atlantic salmon embryos and alevins Salmo salar that had been exposed to isosorbide dinitrate (ISDN) for 4 weeks, on transfer to fresh water, showed an increase in heart rate. Unexposed embryos and alevins showed a decrease in heart rate following transfer to 100 μmol l−1 ISDN for 4 h. This is in contrast to adult rainbow trout and higher vertebrates where tachycardia occurred in response to nitric oxide (NO) donors. The decreased heart rate in response to ISDN was inhibited by 2 mg 1−1 methylene blue, indicating that NO activates cardiovascular events via guanylyl cyclase and cyclic guanidine monophosphate. Heart rate of rainbow trout alevins Oncorhynchus mykiss exposed to 100 μmol l−1 aminoguanidine responded with a slowly developed but significant bradycardia over 10 min as did those reared in aminoguanidine for 4 weeks then transferred to fresh water. A potentiated increase in heart rate on exposure to the NO donor sodium nitroprusside (SNP), occurred within 1 min in salmon alevins reared in l -nitro-arginine methyl ester ( l -NAME) for 4 weeks, indicating up-regulation of NO receptors. The evidence for down-regulation of SNP-reared alevins exposed to l -NAME was less well defined. The results suggest that both salmonid embryos and alevins have a functional l -arginine-NO pathway and that NO has a physiological role in control of cardiovascular events.  相似文献   
9.
This study investigates the effect of aminoguanidine (AG), a selective inducible nitric oxide synthase (iNOS) inhibitor, and pentoxifylline (PTX), a tumour necrosis factor–alpha (TNF‐α) inhibitor, on lipopolysaccharide (LPS)‐induced cardiac stress. Rats were divided into four groups: group I served as a control, group II (LPS) received a single intraperitoneal injection of LPS (10 mg·kg–1), group III (LPS+AG) and group IV (LPS+PTX) were injected with either AG (100 mg·kg–1) or PTX (150 mg·kg–1) intraperitoneally 10 days prior to LPS administration. Normalization of cardiac levels of nitrite/nitrate (NOX), malondialdehyde (MDA), glutathione (GSH), heme oxygenase‐1 (HO‐1), glutathione peroxidase (GPx) and Na+, K+‐ATPase activities was evident in the AG group. Both AG and PTX decreased the elevated serum TNF‐α levels, the activities of lactate dehydrogenase (LDH), creatine kinase (CK) and cardiac myeloperoxidase (MPO). The levels of adenosine triphosphate (ATP), adenosine diphosphate (ADP) and phosphocreatine (PCr) were enhanced following AG and PTX pretreatments. Calcium (Ca2+) levels were altered, and the histopathological observations supported the described results. Conclusively, the study highlights the cardioprotective potential of AG and PTX with superior results from AG. These findings reveal the relative contribution of nitric oxide and TNF‐α to oxidative stress and energy failure during endotoxemia. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
10.
目的:探讨脊髓水平诱导型一氧化氮合酶在吗啡依赖大鼠戒断反应中的作用。方法:健康雄性SD大鼠72只,体重200~250 g,吗啡剂量每次10 mg/kg,每日2次,隔日每次增加10 mg/kg,至第6天末次注射50 mg/kg,大鼠腹腔注射纳洛酮4 mg/kg建立吗啡依赖及戒断模型,在纳洛酮激发戒断前30 min鞘内注射iNOS特异性抑制剂氨基胍(AG)150μg。分为正常对照组、吗啡依赖组、吗啡戒断组、AG组。采用行为学(n=8)、免疫组织化学(n=6)和Western blot(n=4)方法观察鞘内应用iNOS特异性抑制剂氨基胍对吗啡依赖大鼠纳洛酮催促戒断反应和脊髓神经元iNOS表达的影响。结果:AG组戒断症状评分和戒断组促诱发痛评分均低于戒断组(P<0.05)。免疫组织化学和Western blot显示戒断组大鼠脊髓iNOS阳性神经元的数目和蛋白的表达增高,而AG组大鼠脊髓iNOS阳性神经元的数目和iNOS蛋白的表达低于戒断组(P<0.05)。结论:脊髓水平iNOS表达上调可能参与介导吗啡戒断反应。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号