首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   704篇
  免费   135篇
  国内免费   387篇
  2024年   13篇
  2023年   56篇
  2022年   31篇
  2021年   63篇
  2020年   60篇
  2019年   75篇
  2018年   63篇
  2017年   72篇
  2016年   56篇
  2015年   51篇
  2014年   46篇
  2013年   58篇
  2012年   44篇
  2011年   42篇
  2010年   47篇
  2009年   36篇
  2008年   59篇
  2007年   54篇
  2006年   54篇
  2005年   37篇
  2004年   29篇
  2003年   32篇
  2002年   24篇
  2001年   19篇
  2000年   19篇
  1999年   19篇
  1998年   9篇
  1997年   7篇
  1996年   7篇
  1995年   3篇
  1994年   11篇
  1993年   4篇
  1992年   7篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1986年   1篇
  1985年   3篇
  1982年   4篇
  1975年   1篇
排序方式: 共有1226条查询结果,搜索用时 15 毫秒
1.
White‐sand forests are patchily distributed ecosystems covering just 5% of Amazonia that host many specialist species of birds not found elsewhere, and these forests are threatened due to their small size and human exploitation of sand for construction projects. As a result, many species of birds that are white‐sand specialists are at risk of extinction, and immediate conservation action is paramount for their survival. Our objective was to evaluate current survey methods and determine the relative effect of the size of patches of these forests on the presence or absence of white‐sand specialists. Using point counts and autonomous recorders, we surveyed avian assemblages occupying patches of white‐sand forest in the Peruvian Amazon in April 2018. Overall, we detected 126 species, including 21 white‐sand forest specialists. We detected significantly more species of birds per survey point with autonomous recorders than point counts. We also found a negative relationship between avian species richness and distance from the edge of patches of white‐sand forest, but a significant, positive relationship when only counting white‐sand specialists. Although we detected more species with autonomous recorders, point counts were more effective for detecting canopy‐dwelling passerines. Therefore, we recommend that investigators conducting surveys for rare and patchily distributed species in the tropics use a mixed‐method approach that incorporates both autonomous recorders and visual observation. Finally, our results suggest that conserving large, continuous patches of white‐sand forest may increase the likelihood of survival of species of birds that are white‐sand specialists.  相似文献   
2.
Summary   Worldwide, invasive weeds threaten agricultural, natural and urban ecosystems. In Australia's agricultural and grazing regions, invasive species often establish across extensive areas where weed management is hampered by an inability to detect the location and timing of an outbreak. In these vast landscapes, an effective detection and monitoring system is required to delineate the extent of the invasion and identify spatial and temporal factors associated with weed establishment and thickening. In this study, we utilize a time series of remote sensing imagery to detect the spatial and temporal patterns of Prickly Acacia ( Acacia nilotica ) invasion in the Mitchell grass plains of North Queensland. We develop a spectral index from Landsat images which is applied to images from 1989 to 2004, in combination with a classification mask, to identify locations and monitor changes in Prickly Acacia density across 29 000 km2 of Mitchell grass plains. The approach identified spectral and temporal signatures consistent with Prickly Acacia infestation on 1.9% of this landscape. Field checking of results confirmed presence of the weed in previously unrecorded locations. The approach may be used to evaluate future spread, or outcomes of management strategies for Prickly Acacia in this landscape and could be employed to detect and monitor invasions in other extensive landscapes.  相似文献   
3.
4.
5.
In Mono Lake (California), a large saline lake, chlorophyll concentrations in the euphotic zone increased from 4 to 45 µg l–1 between July and October 1979. These seasonal changes in chlorophyll are detectable on imagery obtained with the multispectral scanner on Landsat. Computer-compatible tapes of Landsat images were normalized for solar zenith and corrected for atmospheric scatter and absorption to obtain Landsat band 4 emittances (W m–2 str–1) of 13.4 ± 0.5 when chlorophyll was 4 µg l–1 and 4.6 ± 0.3 when chlorophyll was 45 µg l–1. Lake wide, spatial heterogeneity of chlorophyll of 2 µg l–1 in July and 8 µg l–1 in October was not detectable on the Landsat imagery.  相似文献   
6.
Forest density expressing the stocking status constitutes the major stand physiognomic parameter of Indian forest. Density and age are often taken as surrogate to structural and compositional changes that occur with the forest succession. Satellite remote sensing spectral response is reported to provide information on structure and composition of forest stands. The various vegetation indices are also correlated with forest canopy closure. The paper presents a three way crown density model utilizing the vegetation indices viz., advanced vegetation index, bare soil index and canopy shadow index for classification of forest crown density. The crop and water classes which could not be delineated by the model were finally masked from normalized difference vegetation index and TM band 7 respectively. The rule based approach has been implemented for land use and forest density classification. The broad land cover classification accuracy has been found to be 91.5%. In the higher forest density classes the classification accuracy ranged between 93 and 95%, whereas in the lower density classes it was found to be between 82 and 85%.  相似文献   
7.
Adams  M. L.  Norvell  W. A.  Peverly  J. H.  Philpot  W. D. 《Plant and Soil》1993,155(1):235-238
Leaf reflectance and fluorescence characteristics of soybean (Glycine max cv Bragg) are influenced strongly by Mn availability. This report evaluates the effects of leaflet choice, leaf age, and leaf nodal position on several spectral characteristics. Leaves were obtained from soybeans grown hydroponically under controlled environmental conditions with wide differences in Mn supply. The ratio of constant yield fluorescence (Fo) to variable yield fluorescence (Fv), the ratios of reflectance at 750 nm to 550 nm and that at 650 nm to 550 nm, the position of the "red edge" near 700 nm, and an index of leaf "yellowness" were measured periodically. Increasing leaf age caused increases in the "red edge" and in both reflectance ratios. Leaf "yellowness" and the fluorescence ratio Fo/Fv decreased with leaf age and increased with leaf nodal position, primarily in Mn deficient leaves. Effects arising from leaf choice were smaller than those caused by Mn deficiency.  相似文献   
8.
F. Cuq 《Hydrobiologia》1993,258(1-3):33-40
The analysis of a series of NOAA AVHRR satellite data recorded between July and September 1986 shows the interaction between northerly and southerly water masses during summer as well as the northern limit of the northward advance of water masses originating from the South Equatorial Current. Two upwelling situations analysed by means of NOAA data show the intrusion of suspended matter from the ocean into the Golfe d'Arguin and illustrate the water circulation within the coastal zone. This circulation pattern is detailed by LANDSAT and SPOT data. A SPOT picture from October 1987 shows the structure of the intertidal and coastal geomorphology.  相似文献   
9.
Vegetation cover creates competing effects on land surface temperature: it typically cools through enhancing energy dissipation and warms via decreasing surface albedo. Global vegetation has been previously found to overall net cool land surfaces with cooling contributions from temperate and tropical vegetation and warming contributions from boreal vegetation. Recent studies suggest that dryland vegetation across the tropics strongly contributes to this global net cooling feedback. However, observation-based vegetation-temperature interaction studies have been limited in the tropics, especially in their widespread drylands. Theoretical considerations also call into question the ability of dryland vegetation to strongly cool the surface under low water availability. Here, we use satellite observations to investigate how tropical vegetation cover influences the surface energy balance. We find that while increased vegetation cover would impart net cooling feedbacks across the tropics, net vegetal cooling effects are subdued in drylands. Using observations, we determine that dryland plants have less ability to cool the surface due to their cooling pathways being reduced by aridity, overall less efficient dissipation of turbulent energy, and their tendency to strongly increase solar radiation absorption. As a result, while proportional greening across the tropics would create an overall biophysical cooling feedback, dryland tropical vegetation reduces the overall tropical surface cooling magnitude by at least 14%, instead of enhancing cooling as suggested by previous global studies.  相似文献   
10.
Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2 exchange (NEE; Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2-C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4-C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号