首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2531篇
  免费   164篇
  国内免费   199篇
  2024年   4篇
  2023年   67篇
  2022年   68篇
  2021年   117篇
  2020年   90篇
  2019年   126篇
  2018年   118篇
  2017年   69篇
  2016年   86篇
  2015年   87篇
  2014年   218篇
  2013年   190篇
  2012年   154篇
  2011年   154篇
  2010年   161篇
  2009年   146篇
  2008年   143篇
  2007年   119篇
  2006年   111篇
  2005年   101篇
  2004年   69篇
  2003年   58篇
  2002年   53篇
  2001年   35篇
  2000年   28篇
  1999年   26篇
  1998年   28篇
  1997年   28篇
  1996年   21篇
  1995年   19篇
  1994年   28篇
  1993年   19篇
  1992年   24篇
  1991年   20篇
  1990年   13篇
  1989年   17篇
  1988年   8篇
  1987年   9篇
  1986年   5篇
  1985年   4篇
  1984年   13篇
  1983年   10篇
  1982年   7篇
  1981年   3篇
  1980年   4篇
  1979年   6篇
  1977年   2篇
  1975年   4篇
  1974年   1篇
  1973年   1篇
排序方式: 共有2894条查询结果,搜索用时 31 毫秒
1.
2.
《Cell reports》2020,30(4):1052-1062.e5
  1. Download : Download high-res image (154KB)
  2. Download : Download full-size image
  相似文献   
3.
4.
Dynamic Light Regulation of Photosynthesis (A Review)   总被引:9,自引:7,他引:2  
Regulatory reactions providing the photosynthetic apparatus with the ability to respond to variations of irradiance by changes in activities of the light and the dark stages of photosynthesis within a time range of seconds and minutes are considered in the review. At the light stage, such reactions are related to the changes in both distribution of light energy between two photosystems and probability of nonphotochemical dissipation of absorbed quanta in PSI and PSII. These regulatory reactions operate in a negative feedback mode, thus avoiding overreduction of electron transport chain and minimizing the probability of generation of reactive oxygen species. The crucial role in preventing the generation of reactive oxygen species belongs to dynamic regulation of electron transport activity despite the presence of complex system of their detoxification in chloroplasts. In dark reactions of Calvin cycle, the regulatory responses involve a positive feedback principle being related to redox regulation of activities of several enzymes, which is sensitive to the reduction status of PSI acceptor side. The complex of regulatory reactions based on negative and positive feedback principles provides prolonged functioning of a chloroplast and high stability of photosynthetic activity under various light conditions.  相似文献   
5.
6.
7.
Summary A genomic clone of a wheat -amylase gene (Amy3/33) was identified, on the basis of hybridisation properties, as different from -Amy1 and -Amy2 genes which had been characterised previously. The nucleotide sequence revealed that this gene has the normal sequence motifs of an active gene and an open reading frame interrupted by two introns. The protein sequence encoded by this open reading frame is recognisably similar to that of -amylase from the -Amy1 and -Amy2 genes and there is high sequence homology in all three proteins at the putative active sites and Ca++ binding region. In addition, the introns are at positions equivalent to the position of introns in the -Amy1 and -Amy2 genes. However, the sequence was less similar to -Amy1 and -Amy2 than these are to each other. Southern blot analysis showed that the Amy3/33 DNA is one of a small multigene family carried on a different chromosome (group 5) from either the -Amy1 or -Amy2 genes. A further difference from the -Amy1 and -Amy2 genes was the pattern of expression. Amy3/33 was expressed only in immature grains and, unlike the -Amy1 and -Amy2 genes, not at all in germinating aleurones. These data suggested therefore that this gene represents a third type of -amylase gene, not described before, which shares a common evolutionary ancestor with the -Amy1 and -Amy2 genes.  相似文献   
8.
Summary Fine deletion mutants were generated in the upstream control region of the nopaline synthase (nos) promoter to define the position and role of upstream regulatory elements. The results indicated that the 8 bp sequence (CAGAAACC) at -106/-113 and its inverted repeat (GGTTTCTG) at -140/-147 are important for promoter function. The downstream element appears more important than the upstream element since deletion of the former reduced promoter activity more significantly than deletion of the latter. Deletion of the element alone, however, did not abolish promoter function, whereas, deletion of the 10 bp potential Z-DNA-forming (Z) element located between the repeat elements nullified promoter activity. Therefore, it appears that the Z element is an essential upstream regulator and the repeated elements are upstream modulators of the nos promoter. These elements are functionally distinct since alteration of stereospecificity or insertion of short oligonucleotides between the elements did not significantly influence promoter activity. These regulatory elements were unable to function from 200 bp upstream of the CCAAT-TATA box region.  相似文献   
9.
In this paper we describe the organization and expression of the genes encoding the flavonoid-biosynthetic enzyme dihydroflavonol-4-reductase (DFR) in Petunia hybrida. A nearly full-size DFR cDNA clone (1.5kb), isolated from a corolla-specific cDNA library was compared at the nucleotide level with the pallida gene from Antirrhinum majus and at the amino acid level with enzymes encoded by the pallida gene and the A1 gene from Zea mays.The P. hybrida and A. majus DFR genes transcribed in flowers contain 5 introns, at identical positions; the three introns of the A1 gene from Z. mays coincide with first three introns of the other two species. P. hybrida line V30 harbours three DFR genes (A, B, C) which were mapped by RFLP analysis on three different chromosomes (IV, II and VI respectively).Steady-state levels of DFR mRNA in the line V30 follow the same pattern during development as chalcone synthase (CHS) and chalcone flavanone isomerase (CHI) mRNA. Six mutants that accumulate dihydroflavonols in mature flowers were subjected to Northern blot analysis for the presence of DFR mRNA. Five of these mutants lack detectable levels of DFR mRNA. Four of these five also show drastically reduced levels of activity for the enzyme UDPG: flavonoid-3-O-glucosyltransferase (UFGT), which carries out the next step in flavonoid biosynthesis; these mutants might be considered as containing lesions in regulatory genes, controlling the expression of the structural genes in this part of the flavonoid biosynthetic pathway. Only the an6 mutant shows no detectable DFR mRNA but a wild-type level for UFGT activity. Since both an6 and DFR-A are located on chromosome IV and DFR-A is transcribed in floral tissues, it is postulated that the An6 locus contains the DFR structural gene. The an9 mutant shows a wild-type level of DFR mRNA and a wild-type UFGT activity.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号