首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   3篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1987年   2篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
The development of multicellular embryos depends on coordinated cell-to-cell signalling events. Among the numerous cell-signalling pathways, fibroblast growth factors (FGFs) are involved in important processes during embryogenesis, such as mesoderm formation during gastrulation and growth. In vertebrates, the Fgf superfamily consists of 22 family members, whereas only few FGFs are contained in the less complex genomes of insects and worms. In the recently sequenced genome of the beetle Tribolium, we identified four Fgf family members representing three subfamilies. Tribolium has Fgf1 genes that are absent in Drosophila but known from vertebrates. By phylogenetic analysis and microsynteny to Drosophila, we further classify Tc-fgf 8 as an ancestor of pyramus and thisbe, the fly Fgf8 genes. Tc-fgf8 expression in the growth zone suggests an involvement in mesoderm formation. In the embryonic head, expression of Tc-fgf8 subdivides the brain into a larger anterior and a smaller posterior region. The Fgf Tc-branchless is expressed in the embryonic tracheal placodes and in various gland-like structures. The expression patterns of the only Tribolium Fgf receptor and the adaptor molecule Downstream-of-Fgfr are largely congruent with Tc-Fgf8 and Tc-bnl. Thus, in contrast to Drosophila, only one Fgf receptor canalises Fgf signalling in different tissues in Tribolium. Our findings significantly advance our understanding of the evolution of Fgf signalling in insects.  相似文献   
2.
1. Within a lake district of relatively homogeneous geomorphology, the responses of lakes to climate are influenced by the complexity of the hydrogeologic setting, position in the landscape, and lake‐specific biological and physical features. We examined lake chemical responses to drought in surface water‐ and groundwater‐dominated districts to address two general questions. (1) Are spatial patterns in chemical dynamics among lakes uniform and synchronous within a lake district, suggesting broad geomorphic controls; variable in a spatially explicit pattern, with synchrony related to landscape position, suggesting hydrologic flowpath controls; or spatially unstructured and asynchronous, suggesting overriding control by lake‐specific factors? (2) Are lake responses to drought a simple function of precipitation quantity or are they dictated by more complex interactions among climate, unique lake features, and hydrologic setting? 2. Annual open‐water means for epilimnetic concentrations of chloride, calcium, sulfate, ANC, DOC, total nitrogen, silica, total phosphorus, and chlorophyll a measured between 1982 and 1995 were assembled for lakes in the Red Lake and ELA districts of north‐western Ontario, the Muskoka – Dorset district in south‐central Ontario, and the Northern Highland district of Wisconsin. Within each district, we compared responses of lakes classified by landscape position into highland or lowland, depending on relative location within the local to regional hydrologic flow system. Synchrony, defined as a measure of the similarity in inter‐annual dynamics among lakes within a district, was quantified as the Pearson product‐moment correlation (r) between two lakes with observations paired by year. To determine if solute concentrations were directly related to interannual variations in precipitation quantity, we used regression analysis to fit district‐wide slopes describing the relationship between each chemical variable and annual (June to May) and October to May (Oct–May) precipitation. 3. Among lakes in each of the three Ontario districts, the pattern of chemical response to interannual shifts in precipitation was spatially uniform. In these surface water‐ dominated districts, solute concentrations were generally a simple function of precipitation. Conservative solutes, like calcium and chloride, tended to be more synchronous and were negatively related to precipitation. Solutes such as silica, total phosphorus, and chlorophyll a, which are influenced by in‐lake processes, were less synchronous and relationships with precipitation tended to be positive or absent. 4. In the groundwater‐dominated Northern Highland lakes of Wisconsin, we observed spatial structure in drought response, with lowland lakes more synchronous than highland lakes. However, there was no evidence for a direct relationship between any solute and precipitation. Instead, increases in the concentration of the conservative ion calcium during drought were not followed by a symmetrical return to pre‐drought conditions when precipitation returned to normal or above‐average values. 5. For calcium, time lags in recovery from drought appeared related to hydrologic features in a complex way. In the highland Crystal Lake, calcium concentrations tracked lake stage inversely, with a return to pre‐drought concentrations and lake stage five years after the drought. This pattern suggests strong evaporative controls. In contrast, after five years of normal precipitation, calcium in the lowland Sparkling Lake had not returned to pre‐drought conditions despite a rebound in lake stage. This result suggests that calcium concentrations in lowland lakes were controlled more by regional groundwater flowpaths, which track climatic signals more slowly. 6. Temporal dynamics driven by climate were most similar among lakes in districts that have a relatively simple hydrology, such as ELA. Where hydrologic setting was more complex, as in the groundwater‐dominated Northern Highland of Wisconsin, the expression of climate signals in lakes showed lags and spatial patterns related to landscape position. In general, we expect that landscape and lake‐specific factors become increasingly important in lake districts with more heterogeneous hydrogeology, topography or land use. These strong chemical responses to climate need to be considered when interpreting the responses of lakes to other regional disturbances.  相似文献   
3.
4.
5.
6.
LCA is a system-wide assessment, and the LCIA phase is confronted with the difficulties of local and regional effects in a number of impact categories. We integrate three different environmental techniques to demonstrate how these effects can be addressed in an environmental assessment. The techniques are life cycle inventory, environmental fate models, and an ecological impact assessment using fuzzy expert systems. Results of the LCI are mass and energy flows. In the environmental fate modelling step these mass flows are transformed into concentration and immission values by dispersion-reaction models. A generalised fuzzy expert system for the environmental mechanisms compares calculated exposure with site specific buffering capacities and formulates a generalised dose-response relationship. This generalised fuzzy expert system is used as a template for the assessment of local and regional environmental impacts. An application of this integrated approach is shown for a practical problem: production of magnesium car components. The environmental fate of nitrogen oxides which are released due to the major combustion source within that production system is simulated. Fuzzy expert models for crop damage, soil acidification and eutrophication determine the possible environmental impact of the immited nitrogen oxides. The important methodological extension of this integrated approach is a regionalised impact assessment depending on the spatial distribution of environmental characteristics.  相似文献   
7.
This paper presents the approach and methods used, and the outputs generated, in the derivation of numeric biological objectives for the protection of rivers and streams across Victoria, Australia. Biological objectives have been designed for inclusion in State government legislation for the protection of the State’s waterways. The objectives were developed using data from extensive macroinvertebrate sampling of multiple reference sites across the State. Regional variations are incorporated into the objective-setting process by using an a priori, macroinvertebrate-based regionalisation of the State. The objectives consist of four separate components, including a measure of diversity, two biotic indices and a measure of community composition. The objectives are designed for use across broad regions and any attempt to extend the system to subregional levels would require a careful consideration of the influence of scale upon the grouping of reference sites.  相似文献   
8.
Abstract.  1. Monthly light trap collections over 2 years at 39 sites across South Africa captured over 3 000 000 Culicoides of 86 species, some of them known vectors of African horse sickness and bluetongue viruses.
2. To aid disease control and risk evaluation, cluster analysis and association measurements were carried out on species present at each site. Six species occurred at almost all sites. From the remaining 80 species, eight clusters were identified at > 48% similarity.
3.  Culicoides citroneus and C. krameri were characteristic of cluster 8, C. loxodontis of cluster 4, and two numbered, but un-named, species, C. #119 and C. #89 , of cluster 5.
4. Multiple anova and multiple discriminant analysis on the climatic and geographic parameters of sites in each cluster gave two significant discriminant functions that explained 91.5% of the variance between clusters. Function 1 contrasted sites with high cold cloud duration and high vegetation index with sites with high wind speeds. Function 2 contrasted upland clusters that also had high cold cloud duration with hotter, lower altitude sites.
5. Species associations were explained in terms of biotic provinces, based on ecogeographic factors that have previously been useful to describe communities of birds.
6. None of the clusters was ideal for siting an African horse sickness-vector free quarantine station as C. imicola and C. bolitinos , the main vectors, were found in all clusters but in very low abundance in cluster 5. The analysis provides a firm basis for studying the changing patterns of species distribution under varying climatic influences.  相似文献   
9.
The analysis of regional scale patterns of diversity allows insights into the processes that have shaped modern biodiversity at the macro‐scale. Previous analyses studying biogeographic regionalisation across different high‐level taxa have shown similar trends at a global scale. However, incorporating phylogenetic methods when comparing biogeographic regionalisation between subgroups facilitates identification of mechanisms leading to the biogeographic distribution of specific taxa. We analysed the spatial trends of phylogenetic diversity and phylogenetic endemism of 325 species of New World bats, using updated range maps of the modern distributions. These analyses showed phylogeographic signals that reflect the different evolutionary histories of these families. Zoogeographical zones were detected based on range‐weighted phylogenetic turnover. Values of high phylogenetic diversity and endemism were distributed differently across families, suggesting niche conservatism, but a general latitudinal trend of diversity was evident across taxa. Overall, two main bioregions were shared across New World bat taxa (Nearctic and Neotropical), with two additional subregions (Andean and La Platan). We found strong support for an additional transitional zone in the Pacific coast of South America for Emballonuridae and Molossidae. Differences in regionalisation across families indicate that niche conservatism, in situ diversification and dispersal ability are major drivers for the regionalisation of New World bats, within a dual‐centre of diversification scenario. We also found strong inter‐familial support for an independent Caribbean biogeographic region.  相似文献   
10.
Sea snakes (Hydrophiinae) that specialize on burrowing eel prey have repeatedly evolved tiny heads and reduced forebody relative to hindbody girths. Previous research has found that these “microcephalic” forms have higher counts of precaudal vertebrae, and postnatal ontogenetic changes cause their hindbodies to reach greater girths relative to their forebodies. We examine variation in vertebral size along the precaudal axis of neonates and adults of three species. In the nonmicrocephalic Hydrophis curtus, these intracolumnar patterns take the form of symmetrical curved profiles, with longer vertebrae in the midbody (50% of body length) relative to distal regions. In contrast, intracolumnar profiles in the microcephalic H. macdowelli and H. obscurus are strongly asymmetrical curves (negative skewness) due to the presence of numerous, smaller‐sized vertebrate in the forebody (anterior to the heart). Neonate and adult H. macdowelli and H. obscurus specimens all exhibit this pattern, implying an onset of fore‐ versus hindbody decoupling in the embryo stage. Based on this, we suggest plausible developmental mechanisms involving the presence and positioning of Hox boundaries and heterochronic changes in segmentation. Tests of our hypotheses would give new insights into the drivers of rapid convergent shifts in evolution, but will ultimately require studies of gene expression in the embryos of relevant taxa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号