首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  国内免费   3篇
  28篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2014年   3篇
  2013年   1篇
  2011年   2篇
  2007年   1篇
  2005年   6篇
  2002年   3篇
  1998年   1篇
  1994年   1篇
  1989年   1篇
  1986年   1篇
  1980年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
Changes in epilithic algal communities colonizing introduced substrata were determined in a stream polluted with oil refinery effluent at Digboi (Assam, India). The number of algal taxa was reduced but the growth of blue-green algae, particularly two species ofOscillatoria, was encouraged. Epilithic biomass (as chlorophylla) also declined at polluted stations. The algal community of the upstream station was markedly different from the community occurring just after the confluence of effluent; however, the differences were gradually reduced downstream, indicating improvement in water quality. Of the various criteria tested for possible relationships with the level of pollutants, species richness, Shannon diversity and biomass showed significant relationships. The study demonstrates the usefulness of algal criteria for monitoring oil pollution in running waters.  相似文献   
2.
生物质是自然界最丰富的含碳有机大分子功能体,它有望通过"生物炼制"实现"石油炼制"的辉煌。但是由于生物质资源本身及其转化过程的复杂性,生物质产业虽备受关注,却被认为是遥远的未来产业。传统的生物质资源化利用思路都是先耗费一定的能量破坏生物质结构,然后再进行转化,不仅没有考虑到产品的功能需求,而且过程的原子经济性不高。如何实现化学键更加复杂的固相木质纤维素生物质炼制是实现生物质产业的关键和难点。理想的生物质炼制的目的是以最大得率分离木质纤维原料中各个组分,以尽可能地保持分子的完整性,最大可能地优化利用和最终实现最大价值。这就要求生物质炼制应当是基于原料结构、过程转化和产品特点三者的关联,面向原料、面向过程、面向产品的炼制过程。本期专刊报道了我国生物质炼制技术领域专家学者在原料炼制、炼制技术、组分转化等领域取得的最新研究进展。  相似文献   
3.
Petroleum products are one of the major sources of energy for industry and daily life. Growth of the petroleum industry and shipping of petroleum products has resulted in the pollution. Populations living in the vicinity of oil refinery waste sites may be at greater risk of potential exposure to polycyclic aromatic hydrocarbons (PAH) through inhalation, ingestion, and direct contact with contaminated media. PAH have often been found to coexist with environmental pollutants including heavy metals due to similar pollution sources. The levels and distribution patterns of Σ16 PAH (sum of the 16 PAH) and heavy metals (lead, copper, nickel, cobalt, and chromium) were determined in soil and sediment in the vicinity (5 km radius) of an oil refinery in India. Concentrations of Σ16 PAH in the soils and sediments were found to be 60.36 and 241.23 ppm, respectively. Higher amount of PAH in sediments as compared to soil is due to low water solubility of PAH, settled in the bottom of aquatic bodies. The levels of lead, copper, nickel, cobalt, and chromium (total) in soil were 12.52, 13.52, 18.78, 4.84, and 8.29 ppm, while the concentrations of these metals in sediments were 16.38, 47.88, 50.15, 7.07, and 13.25 ppm, respectively. Molecular diagnostics indices of PAH (Ratio of Phenanthrene/Anthracene, Fluranthene/Pyrene) calculated for soil and sediment samples indicate that the oil refinery environment is contaminated with PAH from petrogenic as well as pyrolytic origin and heavy vehicular traffic on the Agra- Delhi National highway. Sixteen PAH priority pollutants were detected in the United States in entire samples collected near oil refinery areas and concentrations of Σ16 PAH in soil was found to be 1.20 times higher than the threshold value for PAH in soil by ICRCL (Inter-Departmental Committee on the Redevelopment of Contaminated Land). This concentration could lead to disastrous consequences for the biotic and abiotic components of the ecosystem and may affect the soil quality, thus impairing plant growth and its bioaccumulation in food chain.  相似文献   
4.
The objectives of this study were to (1) determine if historical exceedences of oil and grease concentrations above the limits allowed in the National Pollution Elimination Discharge System permit for the wastewater treatment facility of Motiva Enterprises LLC Refinery, Delaware City, Delaware, could be determined from the sedimentary records of the Delaware River and, if so, (2) were the concentrations of contaminants high enough to be toxic to aquatic biota. Eighty-four surficial sediment samples, both within and outside the influence of the Refinery's discharge plume, were initially evaluated for their appropriateness for coring. Seven stations were ultimately selected for the historical core studies. Based on sediment type, radionuclide (Pb-210, Cs-137 and Be-7) geochronologies, and proximity of the cores to the Refinery, two cores were selected for more detailed polycyclic aromatic hydrocarbon (PAH) analyses. The rapid accumulation area of one core (located in the near-field of the discharge plume) had maximum total PAH (TPAH) concentration peaks at depths of 4 cm (1997; 3100 ng/g dw) and at 8.5–9 cm (1993; 3200 ng/g dw); the second core (located on the far-field periphery of the plume) had a maximum TPAH peak at 6.5 cm (1997; 3200 ng/g dw). In all cases, the maximum TPAH concentrations were below NOAA's Effects Range-Low concentration of 4022 ng/g dw for sediment biota toxicity. A chemical fingerprinting analysis of the PAHs in the two cores showed, however, that the PAHs present in the cores were predominantly pyrogenic PAHs consistent with Delaware River background PAHs. The core results are consistent with historic sediment PAH inputs in an industrial river system. PAH from the Refinery, if present, exist as a non-detectable increment to a high PAH baseline from many sources.  相似文献   
5.
This work studied the biodegradation of petroleum hydrocarbons (PHCs) extracted from refinery wastewater to produce industrially important by-products at different incubation periods. Two out of 13 bacterial isolates, KRD2 and KRA4 were isolated. Dichloromethane was used to extract the PHC, and gas chromatography-mass spectrometry (GC-MS) analysis revealed that the refinery wastewater PHC was successfully biodegraded using the selected bacterial isolates within 15 days of incubation. Both KRD2 and KRA4 isolates degraded all 13 initially extracted PHC compounds within 5 days, except C13BD and C9BD, which produced 6 and 4 compounds as secondary metabolites with peak area percentages of 1.58, 1.38, 0.85, 29.94, 7.59, and 11.16% and 3.55, 2.88, 52.31, and 6.14%, respectively. These metabolites have been reported in industrial and medical applications. After 10 days, only 6 and 8 compounds were degraded by both isolates, respectively, and C11PAD compound was produced, as well as C5PAD, C7PAD, and C13PAD. After 15 days, it was clear that all the initial PHC compounds have been completely degraded by both isolates. Metabolites C5PAD, C6PAD, C8PAD, and C13PAD were produced by KRD2, and metabolites C5PAD, C6PAD, C8PAD, and C9PAD were produced by KRA4 at different peak areas. The alignment revealed that the KRA4 isolate was included in the genus Chryseobacterium gambrini, while KRD2 isolate was successfully identified as Mycobacterium confluentis using the Biolog microbial identification system. The incubation period evidently affected biodegradation process by indigenous degraders. These effective bacteria were shown to be of great potential for further application in biodegradation technology of PHC contaminated refinery wastewater to produce industrially important by-products.  相似文献   
6.
In this research, carcinogenic and non-carcinogenic human health risks due to polycyclic aromatic hydrocarbons (PAHs) were investigated via three exposure pathways: accidental ingestion of soil, dermal contact of soils, and contaminated vegetable ingestion. To determine the contaminant concentrations in soil, samples were collected from areas adjacent to the Tehran oil refinery, located in Shahr-e-Ray city, Iran. Analyses of the samples indicated that the average of PAHs concentration in the soil samples were greater than clean-up level guidelines. Cancer risk of contaminants due to ingestion of cultivated vegetables that are sold in Tehran markets was significant in comparison with other exposure pathways. Moreover, the total cancer risk for 5th percentile, 95 upper confidence limit, and 95th percentile concentration of contaminants were 5.69E-04, 8.78E-02, and 2.13E-01, classifying the site as having a significant cancer risk potential. Furthermore, non-carcinogenic health risk analyses for the contaminants demonstrated hazard index of less than 1. Remediation of the soils is highly recommended to eliminate the potential cancer risks and prevent the contamination of the food chain for approximately 10 million Tehran residents.  相似文献   
7.
低温等离子体生物质炼制技术   总被引:1,自引:0,他引:1  
生物质炼制是世界各国的战略性研究方向。目前,主要有汽爆、酸、碱等炼制技术,而低温等离子体因具有独特的化学活性和高能量等优势而倍受青睐。本论文系统阐述了基于低温等离子体技术的生物质预处理、降解制糖、选择性功能改性、液化、气化等炼制技术的研究进展,并探讨了低温等离子体生物质炼制的机理及其今后研究发展方向。  相似文献   
8.
This study examined the performance of pilot-scale vertical subsurface flow constructed wetlands (VSF–CWs) planted with three indigenous plants, i.e. Typha latifolia, Cyperus alternifolius, and Cynodon dactylon, in removing heavy metals from secondary treated refinery wastewater under tropical conditions. The T. latifolia-planted VSF–CW had the best heavy metal removal performance, followed by the Cyperus alternifolius-planted VSF–CW and then the Cynodon dactylon-planted VSF–CW. The data indicated that Cu, Cr, Zn, Pb, Cd, and Fe were accumulated in the plants at all the three VSF–CWs. However, the accumulation of the heavy metals in the plants accounted for only a rather small fraction (0.09–16%) of the overall heavy metal removal by the wetlands. The plant roots accumulated the highest amount of heavy metals, followed by the leaves, and then the stem. Cr and Fe were mainly retained in the roots of T. latifolia, Cyperus alternifolius, and Cynodon dactylon (TF < 1), meaning that Cr and Fe were only partially transported to the leaves of these plants. This study showed that VSF–CWs planted with T. latifolia, Cyperus Alternifolius, and Cynodon dactylon can be used for the large-scale removal of heavy metals from secondary refinery wastewater.  相似文献   
9.
Laboratory-based bioassay experiments using Selenastrum capricornutum PRINTZ as the test organism were conducted to evaluate the potentiality of refinery effluents to sustain algal growth. The raw effluents were remarkably toxic to the test alga, but satisfactory algal growth occurred in (diluted) 0.01 % effluents. The effluents from subsequent treatment stages required much less dilution to eliminate the toxicity. This study implicates oil and phenol in the reduction of algal growth in refinery effluents. A highly significant negative correlation was found between the final yield of the test alga and the concentration of oil or phenol in the culture suspension. The bioassay experiments therefore point to the toxic nature of refinery effluents. On the basis of these findings it is recommended that proper dilution of refinery effluents is necessary before they are discharged into any body of water.  相似文献   
10.
Abstract

Polyhydroxyalkanoates (PHAs) are intracellular carbon and energy storage reserve material stored by gram-negative bacteria under nutrient limitation. PHAs are best alternative biodegradable plastics (bio-plastics) due to their resemblance to conventional synthetic plastic. The present study investigated the synergistic effect of nutritional supplements (amino acid and vitamin) on the PHA production by Alcaligenes sp. NCIM 5085 utilizing a sugar refinery waste (cane molasses) under submerged fermentation process. Initially, the effect of individual factor on PHA yield was studied by supplementing amino acids (cysteine, isoleucine, and methionine), vitamin (thiamin), and cane molasses at varying concentration in the production medium. Further, the cultivation medium was optimized by varying the levels of cane molasses, methionine and thiamin using response surface methodology to enhance the PHA yield. The maximum PHA yield of 70.89% was obtained under the optimized condition, which was then scaled up on 7.5?L-bioreactor. Batch cultivation in 7.5?L-bioreactor under the optimized condition gave a maximum PHA yield and productivity of 79.26% and 0.312 gL?1 h?1, respectively. The PHA produced was subsequently characterized as PHB by FTIR. PHB extracted was of relatively high molecular weight and crystallinity index. DSC analysis gave Tg, Tm, and Xc of 4.2, 179?°C and 66%, respectively. TGA analysis showed thermal stability with maximized degradation occurring at 302?°C, which is above the melting temperature (179?°C) of the purified polymer. The extracted polymer, therefore, possessed desirable material properties to be used in food packaging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号