首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   6篇
  国内免费   2篇
  2023年   1篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2001年   1篇
  1983年   1篇
  1982年   1篇
  1973年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
We describe an assay for the quantification of reverse mutations at the hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus in Chinese hamster ovary cells utilizing the selective agent L-azaserine (AS). Conditions are defined in terms of optimal AS concentration, cell density, and phenotypic expression time. After treatment, replicate cultures of 106 cells are allowed a 48-h phenotypic expression time in 100-mm plates. AS (10 μM) is then added directly to the growing culture and AS-resistant (ASr) cells form visible colonies. This assay is used to quantify ICR-191-, ICR-170-, and N-ethyl-N-nitrosourea-induced reversion of independently isolated HGPRT? clones. The ASr phenotype is characterized both physiologically and biochemically. All ASr clones isolated are stably resistant to AS and aminopterin but sensitive to 6-thioguanine. They also have re-expressed HGPRT enzyme. In addition, several revertants are shown to contain altered HGPRT. The data provide further evidence that ICR-191 and ICR-170 cause structural gene mutations in mammalian cells and also suggest that ICR-191, ICR-170, and N-ethyl-N-nitrosourea induce similar types of mutations in Chinese hamster ovary cells.  相似文献   
2.
ABSTRACT

Smog pollution has received widely attention in recent years due to its negative effects. There is consensus that the motor vehicle exhaust emission is one of the sources of smog pollution and reduced private car use would significantly improve the air quality and alleviate the smog pollution problem. In this research, we aim to investigate how public smog knowledge and risk perception (physical health risk perception and mental health risk perception) affect public attitude and intention to reduce car use. A questionnaire survey of 334 randomly sampled respondents was designed to test these relationships. The results show that public smog knowledge is positively and significantly related to physical health risk perception, mental health risk perception, attitude and intention to reduce car use. Public smog knowledge has the largest impact on intention to reduce car use. Furthermore, physical health risk perception and mental health risk perception are positively and significantly associated with attitude and intention to reduce car use. In addition, the results also indicated that public smog knowledge is at a low level. Based on the results, implications and suggestions for future research were discussed.  相似文献   
3.
Background: Colonization of the gastric mucosa by Helicobacter pylori is one of the most important causes of acute and chronic gastric pathologies in humans. Achieving the growth of H. pylori in liquid media is of great importance in the development of clinical studies. In this study, we developed a sequential optimization strategy based on statistical models to improve the conditions of liquid culture of H. pylori. Materials and Methods: Four statistical models were sequentially used. First, a Box‐Behnken design was used to select the best process conditions (shaking speed, inoculum concentration, and final volume of culture). Secondly, a general factorial design was used to evaluate the influence of adding gel blocks or gel beads (shape and composition). Then a D‐optimal reduce design was carried out to allow the selection of the most influential factors in increasing the cell concentration (culture media components). Finally, another Box‐Behnken design was used to optimize the concentration of the culture media components previously selected. Results: After 12 hours of liquid culture a concentration of 25 × 108 cells per mL (9.4 log10 cells per mL) of H. pylori was obtained, compared with a predicted 32 × 108 (9.5 log10 cells per mL), which means between 1 and 5 log10 units higher than some previous reports. Conclusions: The sequential statistical approach increased the planktonic H. pylori cell culture. The final culture media and conditions were: Brain Heart Infusion, blood agarose (1.5% w/v), lamb’s blood (3.18% v/v), DENT (0.11% v/v), and Vitox (0.52% v/v) at 60 rpm and 37 °C with filtered CO2 (5% v/v) bubbled directly into the culture media in a final volume of 76.22 mL.  相似文献   
4.
Various additives to Ni–Fe systems are studied as cermet cathodes for CO2 electrolysis (973–1173 K) using a La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) electrolyte, which is one of the most promising oxide‐ion conductors for intermediate‐temperature solid‐oxide electrolysis cells in terms of ionic‐transport number and conductivity. It is found that Ni–Fe–La0.6Sr0.4Fe0.8Mn0.2O3 (Ni–Fe–LSFM) exhibits a remarkable performance with a current density of 2.32 A cm?2 at 1.6 V and 1073 K. The cathodic overpotential is significantly decreased by mixing the LSFM powder with Ni–Fe, which is related to the increase in the number of reaction sites for CO2 reduction. For Ni–Fe–LSFM, much smaller particles (<200 nm) are sustained under CO2 electrolysis conditions at high temperatures than for Ni–Fe. X‐ray diffraction analysis suggests that the main phases of Ni–Fe–LSFM are Ni and LaFeO3; thus, the oxide phase of LaFeO3 is also maintained during CO2 electrolysis. Analysis of the gaseous products indicates that only CO is formed, and the rate of CO formation agrees well with that of a four‐electron reduction process, suggesting that the reduction of CO2 to CO proceeds selectively. It is also confirmed that almost no coke is deposited on the Ni–Fe–LSFM cathode after CO2 electrolysis.  相似文献   
5.
The mutagenicity of 7-bromomethylbenz[a]anthracene, a reactive arylalkylating carcinogen, was investigated in several strains of E. coli WP2, using reversion from tryptophan auxotrophy (ochre trpE locus) as a measure of induced mutation.WP2, the wild-type with respect to DNA repair, was more resistant to the cytotoxic effects of 7-bromomethylbenz[a]anthracene than WP2uvrA, WP2exrA, or WP2uvrAexrA, the D37 doses of carcinogen being 22, 5, 8, and 1 μg/ml respectively. Mutagenesis in WP2 was observed only at doses in excess of the DQ, whereas in WP2uvrA mutation was linearly related to dose throughout the range studies. No mutation was detectable in WP2exrA or WP2uvrAexrA even at doses which resulted in 95% and 99.9% lethality respectively. It was concluded that an intact Exr function was an absolute requirement for the induction of mutation by 7-bromomethylbenz[a]anthracene and that excision-repair was very efficient in removing premutational lesios.The use of [3H]7-bromomethylbenz[a]anthracene at high specific radioactivity enabled the quantitation of mutation as a function of the extent of reaction of the mutagen with cellular macromolecules. Extent of reaction with DNA, RNA and protein was linearly related to dose, binding to DNA being 3 times that to RNA and 20 times that to protein. There was a linear relationship between binding and mutation in WP2uvrA and the effective target size for Exr-mediated mutation in this system was of the order of 0.04 nucleotides. Having established that the n umber of 7-bromomethylbenz[a]anthracene-induced mutants increased linearly with successive cell generations and, by use of T4 ochre427, that about 30% of the mutants scored were true revertants, it was estimated that the Exr pathway incorporates productive errors into the bacterial genome with a frequency of the order of 2.10?3.  相似文献   
6.
Electrolytes that are able to reversibly deposit/strip Mg are crucial for rechargeable Mg batteries. The most studied complex electrolytes based on Lewis acid‐base chemistry are expensive, difficult to be synthesized, and show limited anodic stability. Conventional electrolytes using simple salts such as Mg(TFSI)2 can be readily synthesized, but Mg deposition/stripping in these simple salt electrolytes is accompanied by a large overpotential due to the formation of a surface layer on the Mg metal with a low Mg ion conductivity. Here the overpotential for Mg deposition/stripping in a simple salt, Mg(TFSI)2‐1,2‐dimethoxyethane (DME), electrolyte is significantly reduced by adding a small concentration of iodine (≤50 × 10?3m ) as an additive. Mechanism studies demonstrate that an Mg ion conductive solid MgI2 layer is formed on the surface of the Mg metal and acts as a solid electrolyte interface. With the Mg(TFSI)2‐DME‐I2 electrolyte, a very small voltage hysteresis is achieved in an Mg‐S full cell.  相似文献   
7.
Lithium ‐ air batteries have become a focus of research on future battery technologies. Technical issues associated with lithium‐air batteries, however, are rather complex. Apart from the sluggish oxygen reaction kinetics which demand efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts, issues are also inherited from the nature of an open battery system and the use of reactive metal lithium as anode. Lithium‐air batteries, which exchange oxygen directly with ambient air, face more challenges due to the additional oxidative agents of moisture, carbon dioxide, etc. which degrade the metal lithium anode, deteriorating the performance of the batteries. In order to improve the cycling performance one must hold a full picture of lithium‐oxygen electrochemistry in the presence of carbon dioxide and/or moisture and fully understand the fundamentals of chemistry reactions therein. Recent advances in the exploration of the effect of moisture and CO2 contaminants on Li‐O2 batteries are reviewed, and the mechanistic understanding of discharge/charge process in O2 at controlled level of moisture and/or CO2 are illustrated. Prospects for development opportunities of Li‐air batteries, insight into future research directions, and guidelines for the further development of rechargeable Li‐air batteries are also given.  相似文献   
8.
9.
10.
Iron (Fe) is an essential nutrient for plant growth and development. In plant tissues, approximately 80% of Fe is found in photosynthetic cells. This study was carried out to determine the effect of different iron concentrations on the photosynthetic characteristics of sweet potato plants. The fluorescence transient of chlorophyll a (OJIP), chlorophyll index and gas exchange were measured in plants grown for seven days in Hoagland solution containing an iron concentration of 0.45, 0.90, 4.50 or 9.00 mM Fe (as Fe-EDTA). The initial and maximum fluorescence increased in the plants receiving 9.00 mM Fe. In the analysis of the fluorescence kinetic difference, L- and K-bands appeared in all of the treatments, but the amplitude was higher in plants receiving 4.50 or 9.00 mM Fe. In plants grown in 9.00 mM Fe, the parameters of the JIP-Test indicated a better efficiency in the capture, absorption and use of light energy, and although the chlorophyll index was higher, the net photosynthesis was lower. The overall data showed that sweet potato plants subjected to high iron concentrations may not exhibit the toxicity symptoms, but the light reactions of photosynthesis can be affect, which may result in a declining net assimilation rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号