首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   5篇
  国内免费   3篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2010年   3篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1973年   1篇
排序方式: 共有57条查询结果,搜索用时 875 毫秒
1.
The villus cavity cells, a specific cell type of the chick chorioallantoic membrane, express both cytosolic carbonic anhydrase in their cytoplasm and [Formula: See Text] anion exchangers at their basolateral membranes. By immunohistochemical analysis, we show here that villus cavity cells specifically react with antibodies directed against the membrane-associated form of carbonic anhydrase, CAIV. Staining is restricted to the apical cell membranes, characteristically invaginated toward the shell membrane, as well as to endothelia of blood vessels present in the mesodermal layer. The occurrence of a membrane-associated CA form at the apical pole of villus cavity cells, when definitively confirmed, would be fairly consistent with the role proposed for these cells in bicarbonate reabsorption from the eggshell so to prevent metabolic acidosis in the embryo during development.  相似文献   
2.
Summary The mechanism of the luminal colloid reabsorption and the fate of reabsorbed colloid droplets were studied ultracytochemically in epithelial cells of thyroid cells of TSH-treated mice. The luminal colloid is reabsorbed by micropinocytosis as well as phagocytosis into the follicle epithelial cell. Almost all the pinocytotic pits and vesicles are coated and often closely associated with actin filaments demonstrated by use of heavy meromyosin (HMM). This suggests the involvement of the actin filament system in making and transporting coated vesicles for micropinocytosis of the luminal colloid. Freeze-fracture images show aggregates of intramembrane particles on the P-face of the small depressions corresponding to the initial site for coated pits.The reabsorbed colloid droplets fuse with one another and with lysosomes. At the initial stage of this fusion, the limiting membranes of adjoining droplets fuse in a limited area to become pentalaminar, and then become trilaminar. Eventually, the membranes at the fusion point disappear, and the contents of both droplets become continuous. Freeze-fracture images reveal the disappearance of the intramembrane particles at the initial site where the fusion occurs.Examination of thin-sectioned tissue treated by rapid-freeze substitution fixation, shows clearly delineated cell organelles, and the rounded mitochondria have a characteristically high electron-dense matrix. Just beneath the limiting membrane of each colloid droplet, there always exists a low electron-dense layer about 10 nm thickness. The lysosomes are sometimes seen wrapped around the colloid droplet.This study was supported by grants (No. 56370002, No. 00544016) from the Japan Ministry of Education  相似文献   
3.
Nephrotoxicity is known to be a major clinical side effect of aminoglycoside antibiotics. Aminoglycosides cause damage to proximal tubular cells in kidney, however the mechanism of toxicity is still unclear. In order to elucidate the mechanism of nephrotoxicity, we studied the effect of aminoglycoside antibiotics on glucose transport systems in vitro and in vivo. As a result, we found that the aminoglycosides significantly reduced Na(+)/glucose cotransporter (SGLT1)-dependent glucose transport and also down-regulated mRNA and protein levels of the SGLT1 in pig proximal tubular LLC-PK(1) cells. To obtain evidence about SGLT1 down-regulation in vivo, we studied the mRNA expression of SGLT1 using gentamicin C-treated murine kidney and found that gentamicin C down-regulated SGLT1 in vivo as well as in vitro. Furthermore, the gentamicin C-treated mice showed significant rise in urinary glucose excretion. These results indicate that one of the mechanisms of aminoglycoside nephrotoxicity is the down-regulation of SGLT1, which causes reduction in glucose reabsorption in kidney.  相似文献   
4.
Intestine absorption of intact green fluorescent protein (GFP) and its following accumulation in the renal proximal tubule cells after its intragastric administration have been established by confocal microscopy in the rat and frog. Reabsorbed GFP was revealed in the endosomes and lysosomes of the proximal tubule cells by the methods of GFP photooxidation and immunofluorescent microscopy. The GFP intestine absorption rate and GFP accumulation in the kidney were significantly higher in the frog than in the rat. No specific fluorescence was revealed in the liver and colon cells after the GFP intragastric administration. The data obtained indicate the ability of the small intestine in the frog and rat to absorb intact proteins and an important role of the kidney in exogenous protein metabolism.  相似文献   
5.
Antecedent studies have suggested that lipid composition and fluidity of cellular membranes of various organs are altered in response to thyroid hormone status. To date, the effects of thyroid hormone status on these parameters have not been examined in rat renal apical membrane in regard to sodium-dependent phosphate transport. In the present study, we determined the potential role of alterations in cortical brush-border membrane lipid composition and fluidity in modulation of Na+–Pi transport activity in response to thyroid hormone status. Thyroid hormone status influences the fractional excretion of Pi, which is associated with alteration in renal brush-border membrane phosphate transport. The increment in Na+–Pi transport in renal BBMV isolated from Hyper-T rats is manifested as an increase in the maximal velocity (Vmax) of Na+–Pi transport. Further, the cholesterol content was significantly increased in renal BBM of Hypo-T rats and decreased in Hyper-T rats as compared to the Eu-T rats. The molar ratio of cholesterol/phospholipids was also higher in renal BBM from hypo-T rats. Subsequently, fluorescence anisotropy of diphenyl hexatriene (rDPH) and microviscosity were significantly decreased in the renal BBM of the Hyper-T rats and increased in the Hypo-T rats as compared to Eu-T rats. The result of this study, therefore, suggest that alteration in renal BBM cholesterol, cholesterol/phospholipid molar ratio, and membrane fluidity play an important role in the modulation of renal BBM Na+–Pi transport in response to thyroid hormone status of animals. (Mol Cell Biochem 268: 75–82, 2005)  相似文献   
6.
Expression and localization of members of the aquaporin (AQP) family (AQP1, 2, 3, 4, and 5) in the kidney of the musk shrew (Suncus murinus) was examined by immunohistochemistry. AQP1 was expressed in the proximal tubules and in the thin limb of the loops of Henle. AQP1 was the only water channel expressed in the proximal nephron examined, indicating that AQP1 may be an independent water transporter in the proximal nephron. AQP2 and AQP5 were localized to the apical cytoplasm of the cortical to medullary collecting duct (CD) cells and AQP3 and AQP4 were localized to the basal aspect of the cortical to medullary CD cells. AQP3 expression was weaker in the cortical cells compared with the medullary cells, whereas AQP4 was strongly positive throughout the CD. These indicate that the CD is the main water reabsorption segment of the nephron and is regulated by AQPs. Indeed, apical water transport of CD cells of the musk shrew may be controlled by both AQP2 and AQP5. The characteristic expression pattern of the AQPs in this animal provides a novel animal model for elucidating the regulation of water reabsorption by AQPs in the mammalian kidney.  相似文献   
7.
The epithelial calcium channels, TRPV5 and TRPV6, have been extensively studied in epithelial tissues controlling the Ca2+ homeostasis and exhibit a range of distinctive properties that distinguish them from other TRP channels. This review focuses on the tissue distribution, the functional properties, the architecture and the regulation of the expression and activity of the TRPV5 and TRPV6 channel.  相似文献   
8.
9.
10.
The male reproductive tract and accessory glands comprise a complex but interrelated system of tissues that are composed of many distinct cell types, all of which contribute to the ability of spermatozoa to carry out their ultimate function of fertilizing an oocyte. Spermatozoa undergo their final steps of maturation as they pass through the male excurrent duct, which includes efferent ducts, the epididymis and the vas deferens. The composition of the luminal environment in these organs is tightly regulated. Major fluid reabsorption occurs in efferent ducts and in the epididymis, and leads to a significant increase in sperm concentration. In the distal epididymis and vas deferens, fluid secretion controls the final fluidity of the luminal content. Therefore, the process of water movement in the excurrent duct is a crucial step for the establishment of male fertility. Aquaporins contribute to transepithelial water transport in many tissues, including the kidney, the brain, the eye and the respiratory tract. The present article reviews our current knowledge regarding the distribution and function of aquaporins in the male excurrent duct.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号