首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2020年   1篇
  2018年   1篇
  2014年   2篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
排序方式: 共有12条查询结果,搜索用时 171 毫秒
1.
We recently demonstrated that reconstituted high-density lipoprotein (rHDL) modulates glucose metabolism in humans via both AMP-activated protein kinase (AMPK) in muscle and by increasing plasma insulin. Given the key roles of both AMPK and insulin in fatty acid metabolism, the current study investigated the effect of rHDL infusion on fatty acid oxidation and lipolysis. Thirteen patients with type 2 diabetes received separate infusions of rHDL and placebo in a randomized, cross-over study. Fatty acid metabolism was assessed using steady-state tracer methodology, and plasma lipids were measured by mass spectrometry (lipidomics). In vitro studies were undertaken in 3T3-L1 adipocytes. rHDL infusion inhibited fasting-induced lipolysis (P = 0.03), fatty acid oxidation (P < 0.01), and circulating glycerol (P = 0.04). In vitro, HDL inhibited adipocyte lipolysis in part via activation of AMPK, providing a possible mechanistic link for the apparent reductions in lipolysis observed in vivo. In contrast, circulating NEFA increased after rHDL infusion (P < 0.01). Lipidomic analyses implicated phospholipase hydrolysis of rHDL-associated phosphatidylcholine as the cause, rather than lipolysis of endogenous fat stores. rHDL infusion inhibits fasting-induced lipolysis and oxidation in patients with type 2 diabetes, potentially through both AMPK activation in adipose tissue and elevation of plasma insulin. The phospholipid component of rHDL also has the potentially undesirable effect of increasing circulating NEFA.  相似文献   
2.
The neighboring position of apolipoprotein A-I (apoA-I) and apolipoprotein A-V (apoA-V) gene and the modulation of apoA-V on the concentrations, size and maturation of high density lipoprotein (HDL) may indicate a special relationship between apoA-V and HDL. To assess the effects of apoA-V on HDL structure and related functions in vitro, a series of recombinant HDL (rHDL) were synthesized in vitro with various mass ratios of recombinant apoA-I: apoA-V. An increase in apoA-V in rHDL resulted in enhanced lipid-binding ability, increased phospholipid content and larger particle size. Furthermore, the lipid-free and lipid-bound apoA-V in rHDL showed antioxidant capacity against low density lipoprotein (LDL) in vitro. In THP-1 derived macrophages, apoA-V of rHDL was shown to have no influence on the uptake of oxidized LDL (oxLDL) and intracellular lipid accumulation. Thus, the addition of apoA-V to rHDL resulted in changes in several rHDL properties, including increased lipid-binding ability, phospholipid content, particle size and antioxidant capacity. These alterations may explain the modulation of apoA-V on HDL in vivo and the beneficial functions of apoA-V on atherosclerosis.  相似文献   
3.
The ATP-binding cassette transporter G1 (ABCG1) mediates free cholesterol efflux onto lipidated apolipoprotein A-I (apoA-I) and plays an important role in macrophage reverse cholesterol transport thereby reducing atherosclerosis. However, how ABCG1 mediates the efflux of cholesterol onto lipidated apoA-I is unclear. Since the crystal structure of ABCG family is not available, other approaches such as site-directed mutagenesis have been widely used to identify amino acid residues important for protein functions. We noticed that ABCG1 contains a single cysteine residue in its putative transmembrane domains. This cysteine residue locates at position 514 (Cys514) within the third putative transmembrane domain and is highly conserved. Replacement of Cys514 with Ala (C514A) essentially abolished ABCG1-mediated cholesterol efflux onto lipidated apoA-I. Substitution of Cys514 with more conserved amino acid residues, Ser or Thr, also significantly decreased cholesterol efflux. However, mutation C514A had no detectable effect on protein stability and trafficking. Mutation C514A also did not affect the dimerization of ABCG1. Our findings demonstrated that the sulfhydryl group of Cys residue located at position 514 plays a critical role in ABCG1-mediated cholesterol efflux. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   
4.
Wang Y  Zhu X  Wu G  Shen L  Chen B 《Journal of lipid research》2008,49(8):1640-1645
HDL has been shown to be able to neutralize the toxicity of lipopolysaccharide (LPS). Our previous study (J. Lipid Res. 2005. 46: 1303-1311) characterized the properties of secondary structure and in vitro functions of different cysteine mutants of apolipoprotein A-I. Here, we reconstituted recombinant HDLs (named rHDLwt, rHDL52, rHDL74, rHDL107, rHDL129, rHDL173, rHDL195, and rHDL228) by mixing wild type or those mutants with dipalmitoyl phosphatidylcholine and examined their in vivo effects on LPS-induced endotoxemia in mice. Our results showed that 24 h after injection, mice receiving rHDL74 or rHDL52 had a significant decrease of plasma tumor necrosis factor alpha (TNF-alpha) and interleukin-1beta (IL-1beta), compared with control mice receiving either saline or rHDLwt (P < 0.05). Administration of rHDL74 to mice injected with LPS also led to a decrease of plasma IL-6, protection of lung against acute injury, and attenuation of endotoxin-induced clinical symptoms in mice, compared with controls injected with LPS only. However, injection of rHDL228 significantly increased plasma concentration of TNF-alpha and exacerbated LPS-induced lung injury. In summary, compared with rHDLwt, rHDL74 and rHDL52 exhibit higher anti-inflammation capabilities, whereas rHDL228 shows hyper-proinflammation by exacerbating LPS-induced endotoxemia in mice.  相似文献   
5.
A decrease in adiponectin secretion leads to the early stage of atherosclerosis. Discoidal high-density lipoproteins (HDL) accept the cholesterol that effluxes from cells expressing the ATP binding cassette transporter A1 (ABCA1) in the first step of reverse cholesterol transport (RCT). Recently, a new therapeutic strategy involving reconstituted (r)HDL has been shown to enhance RCT. Therefore, we hypothesized that adiponectin may increase the efflux associated with ABCA1 and also enhance rHDL-induced efflux in human embryonic kidney 293 (HEK293T) cells. We transfected adiponectin receptor 1 and 2 (AdipoR1 and AdipoR2) cDNA into cells. The transfected cells were labeled with [3H]cholesterol following cholesterol loading with or without adiponectin for 24 h. The levels of cholesterol efflux were analyzed using a liquid scintillation counter. Treatment with adiponectin was associated with significantly higher levels of efflux in AdipoR1- and AdipoR2-transfected cells. Interestingly, rHDL-induced cholesterol efflux was enhanced in the presence of adiponectin. The down-regulation of adiponectin receptors using short-hairpin RNA decreased rHDL-induced cholesterol efflux with the down-regulation of ABCA1. In summary, adiponectin and its receptors increased cholesterol efflux and also enhanced rHDL-induced efflux at least partially through an ABCA1 pathway. These results suggest that adiponectin may enhance the RCT system and induce an anti-atherogenic effect.  相似文献   
6.
The mutation L159R apoA-I or apoA-IL159R (FIN) is a single amino acid substitution within the sixth helical repeat of apoA-I. It is associated with a dominant negative phenotype, displaying hypoalphaproteinemia and an increased risk for atherosclerosis in humans. Mice lacking both mouse apoA-I and LDL receptor (LDL−/−, apoA-I−/−) (double knockout or DKO) were crossed > 9 generations with mice transgenic for human FIN to obtain L159R apoA-I, LDLr−/−, ApoA-I−/− (FIN-DKO) mice. A similar cross was also performed with human wild-type (WT) apoA-I (WT-DKO). In addition, FIN-DKO and WT-DKO were crossed to obtain WT/FIN-DKO mice. To determine the effects of the apoA-I mutations on atherosclerosis, groups of each genotype were fed either chow or an atherogenic diet for 12 weeks. Interestingly, the production of dysfunctional HDL-like particles occurred in DKO and FIN-DKO mice. These particles were distinct with respect to size, and their enrichment in apoE and cholesterol esters. Two-dimensional gel electrophoresis indicated that particles found in the plasma of FIN-DKO mice migrated as large α3-HDL. Atherosclerosis analysis showed that FIN-DKO mice developed the greatest extent of aortic cholesterol accumulation compared to all other genotypes, including DKO mice which lack any apoA-I. Taken together these data suggest that the presence of large apoE enriched HDL particles containing apoA-I L159R lack the normal cholesterol efflux promoting properties of HDL, rendering them dysfunctional and pro-atherogenic. In conclusion, large HDL-like particles containing apoE and apoA-IL159R contribute rather than protect against atherosclerosis, possibly through defective efflux properties and their potential for aggregation at their site of interaction in the aorta. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   
7.
Timothy H. Bayburt 《FEBS letters》2010,584(9):1721-14316
Nanodiscs are soluble nanoscale phospholipid bilayers which can self-assemble integral membrane proteins for biophysical, enzymatic or structural investigations. This means for rendering membrane proteins soluble at the single molecule level offers advantages over liposomes or detergent micelles in terms of size, stability, ability to add genetically modifiable features to the Nanodisc structure and ready access to both sides of the phospholipid bilayer domain. Thus the Nanodisc system provides a novel platform for understanding membrane protein function. We provide an overview of the Nanodisc approach and document through several examples many of the applications to the study of the structure and function of integral membrane proteins.  相似文献   
8.
Apolipoprotein E3 (apoE3) is an anti-atherogenic apolipoprotein with the ability to exist in lipid-free and lipoprotein-associated states. During atherosclerosis, its function in promoting cholesterol efflux from macrophages via the ATP-binding cassette transporter A1 (ABCA1) takes a prominent role, leading to generation of nascent high density lipoprotein (nHDL) particles. The objective of this study is to understand the conformation adopted by apoE3 in macrophage-generated nHDL using a fluorescence spectroscopic approach involving pyrene. Pyrene-labeled recombinant human apoE3 displayed a robust ability to stimulate ABCA1-mediated cholesterol efflux from cholesterol-loaded J774 macrophages (which do not express apoE), comparable to that elicited by unlabeled apoE3. The nHDL recovered from the conditioned medium revealed the presence of apoE3 by immunoblot analysis. A heterogeneous population of nHDL bearing exogenously added apoE3 was generated with particle size varying from ∼12 to ∼19 nm in diameter, corresponding to molecular mass of ∼450 to ∼700 kDa. The lipid: apoE3 ratio varied from ∼60:1 to 10:1. A significant extent of pyrene excimer emission was noted in nHDL, indicative of spatial proximity between Cys112 on neighboring apoE3 molecules similar to that noted in reconstituted HDL. Cross-linking analysis using Cys-specific cross-linkers revealed the predominant presence of dimers. Taken together the data indicate a double belt arrangement of apoE molecules on nHDL. A similar organization of the C-terminal tail of apoE on nHDL was noted when pyrene-apoEA277C(201–299) was used as the cholesterol acceptor. These studies open up the possibility of using exogenously labeled apoE3 to generate nHDL for structural and conformational analysis.  相似文献   
9.
High-density lipoproteins (HDLs) are complexes of proteins (mainly apoA-I and apoA-II) and lipids that remove cholesterol and prevent atherosclerosis. Understanding the distinct properties of the heterogeneous HDL population may aid the development of new diagnostic tools and therapies for atherosclerosis. Mature human HDLs form two major subclasses differing in particle diameter and metabolic properties, HDL2 (large) and HDL3 (small). These subclasses are comprised of HDL(A-I) containing only apoA-I, and HDL(A-I/A-II) containing apoA-I and apoA-II. ApoA-I is strongly cardioprotective, but the function of the smaller, more hydrophobic apoA-II is unclear. ApoA-II is thought to counteract the cardioprotective action of apoA-I by stabilizing HDL particles and inhibiting their remodeling. To test this notion, we performed the first kinetic stability study of human HDL subclasses. The results revealed that the stability of plasma spherical HDL decreases with increasing particle diameter; which may facilitate preferential cholesterol ester uptake from large lipid-loaded HDL2. Surprisingly, size-matched plasma HDL(A-I/A-II) showed comparable or slightly lower stability than HDL(A-I); this is consistent with the destabilization of model discoidal HDL observed upon increasing the A-II to A-I ratio. These results clarify the roles of the particle size and protein composition in HDL remodeling, and help reconcile conflicting reports regarding the role of apoA-II in this remodeling.  相似文献   
10.
Prolonged hyperglycemia in poorly controlled diabetes leads to an increase in reactive glucose metabolites that covalently modify proteins by non-enzymatic glycation reactions. Apolipoprotein A-I (apoA-I) of high-density lipoprotein (HDL) is one of the proteins that becomes glycated in hyperglycemia. The impact of glycation on apoA-I protein structure and function in lipid and glucose metabolism were investigated.ApoA-I was chemically glycated by two different glucose metabolites (methylglyoxal and glycolaldehyde). Synchrotron radiation and conventional circular dichroism spectroscopy were used to study apoA-I structure and stability. The ability to bind lipids was measured by lipid-clearance assay and native gel analysis, and cholesterol efflux was measured by using lipid-laden J774 macrophages. Diet induced obese mice with established insulin resistance, L6 rat and C2C12 mouse myocytes, as well as INS-1E rat insulinoma cells, were used to determine in vivo and in vitro glucose uptake and insulin secretion.Site-specific, covalent modifications of apoA-I (lysines or arginines) led to altered protein structure, reduced lipid binding capability and a reduced ability to catalyze cholesterol efflux from macrophages, partly in a modification-specific manner. The stimulatory effects of apoA-I on the in vivo glucose clearance were negatively affected when apoA-I was modified with methylglyoxal, but not with glycolaldehyde. The in vitro data showed that both glucose uptake in muscle cells and insulin secretion from beta cells were affected. Taken together, glycation modifications impair the apoA-I protein functionality in lipid and glucose metabolism, which is expected to have implications for diabetes patients with poorly controlled blood glucose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号