首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   707篇
  免费   71篇
  国内免费   6篇
  2023年   16篇
  2022年   19篇
  2021年   22篇
  2020年   30篇
  2019年   28篇
  2018年   31篇
  2017年   25篇
  2016年   20篇
  2015年   20篇
  2014年   25篇
  2013年   47篇
  2012年   21篇
  2011年   22篇
  2010年   17篇
  2009年   25篇
  2008年   28篇
  2007年   37篇
  2006年   27篇
  2005年   42篇
  2004年   35篇
  2003年   30篇
  2002年   18篇
  2001年   25篇
  2000年   18篇
  1999年   19篇
  1998年   21篇
  1997年   13篇
  1996年   9篇
  1995年   9篇
  1994年   10篇
  1993年   8篇
  1992年   12篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   6篇
  1985年   5篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   6篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
排序方式: 共有784条查询结果,搜索用时 265 毫秒
1.
《Cell reports》2020,30(3):630-641.e5
  1. Download : Download high-res image (118KB)
  2. Download : Download full-size image
  相似文献   
2.

With the view of incorporating quaternary ammonium salts (QAs) in marine paints, nineteen of these were tested against a community of marine bacteria, at a temperature and salinity close to those of seawater. The concentration of QAs and the length of the main substituting chain are the main parameters affecting the growth and adhesion of bacteria, but the nature of (i) the other chains, (ii) the counter‐ion and (iii) the rings when inserted in the QA molecule also influenced the bacteria. Increasing the concentration of the QAs decreased the growth rate of the bacteria, the maximum cell density at the plateau and the rate of adhesion. The effect of increasing the length of the main chain depended on the range of carbon numbers. Below 7 carbon atoms, the growth rate was not significantly modified, but the numbers of cells at the plateau increased in contrast with the adhesion rate which decreased rapidly. Increasing the length of the chain to between 7 and 16 carbon atoms resulted in a decrease in the growth rate, a decrease and then a stabilisation in the numbers of cells at the plateau and no further change in the adhesion rate. Possibly an increase in growth rate, adhesion rate and in the numbers of cells at the plateau may occur above 16 carbon atoms. In contrast, the length of the other chains influenced positively the cell concentration at the plateau, and more generally the efficiency of QAs decreased substantially when these chains had the same numbers of carbon atoms. QAs with iodide as counter‐ion were more effective than those with chloride or bromide and phenyl was more effective than benzyl as rings inserted in QAs. The minimum inhibitory concentrations (MIC) were often very high if compared to standard methods with laboratory strains, and this can be tentatively explained by the dominance of Gram— bacteria in the community assayed, the development of resistant strains in the cultures used with time and the presence of organic matter in the culture medium.  相似文献   
3.
Summary Density-dependent regulation of cell growth in tissue culture is a well-known phenomenon but the mechanism of regulation remains obscure. Here we explore the effects of cell density and metabolite flux on the collective dynamics of a cell population. The intracellular dynamics are modelled by positive feedback kinetic mechanisms of the kind known to apply to yeast cells. Several experimental observations related to glycolytic oscillations are predicted and it is suggested that the general conclusions may be applicable in a broader context.  相似文献   
4.
An endogenous circadian rhythm of transpiration in Tamarix aphylla   总被引:1,自引:0,他引:1  
An endogenous circadian rhythm in the transpiration of Tamarix aphylla (L.) Karst. was found for plants grown in continuous light under laboratory conditions. The mean period (±SD) was 21.7±2.3 h (n = 121). No such rhythm was observed in continuous darkness, except for one small hump at the time of the first cycle. The influence of NaCl, Cd(NO3)2 and LiCi on the rhythmic behaviour of young T. aphylla plants was investigated. NaCl concentrations of up to 150 m M reduced the overall transpiration rates of the plants, but did not change the period of the rhythm. The amplitude and the mesor of the oscillations were inversely correlated with the NaCl concentration. A similar influence was found for Cd(NO3)2, but with concentrations that were approximately three orders of magnitude smaller than those of the NaCl treatments. The rhythmic behaviour of the plants was not altered by 10 m M LiCl. It is suggested that the described rhythm of transpiration may have a dual effect: (a) it might cause a partial closure of the stomates during midday hours and (b) it might serve as a possible synchronizer ("master clock") for other rhythmic phenomena in the plants.  相似文献   
5.
The low-energy orientational oscillations of the peptide groups of an -helix are considered and the value of the frequency is estimated to be in agreement with experiments. Approximate formulae are derived for the projection of a dipole moment on the helix axis and for the helix parameters. Within the framework of a three-chain model, the asymptotics of the soliton solution is obtained using a discrete approach.The analysis of -helix geometry exhibits two types of low-frequency oscillations of the -helix. The first one is connected with atom movements along the helix axis with the peptide groups twisting around the helix axis. Accordingly, it changes the hydrogen bond lengths between neighbouring peptide groups. In the second case, the slopes of the peptide groups to the helix axis oscillate without the helix parameters changing. Here, the energy of interactions between peptide-group dipoles is changed and, as a result, the oscillations have an optical nature. The frequency of the optical orientational oscillations is approximately 100 cm-1.  相似文献   
6.
In this paper, we study the effect of introducing a delay in a model of cell proliferation considered originally by O. Arino and M. Kimmel (J. Math. Biol. 27, 341–354 (1989)). We prove that slow oscillations take place and periodic oscillations appear for appropriate values of a parameter.  相似文献   
7.
Oscillations in the rate of photosynthesis of sunflower (Helianthus annuus L.) leaves were induced by subjecting leaves, whose photosynthetic apparatus had been activated, to a sudden transition from darkness or low light to high-intensity illumination, or by transfering them in the light from air to an atmosphere containing saturating CO2. It was found that at the first maximum, light-and CO2-saturated photosynthesis can be much faster than steady-state photosynthesis. Both QA in the reaction center of PS II and P700 in the reaction center of PS I of the chloroplast electron-transport chain were more oxidized during the maxima of photosynthesis than during the minima. Maxima of P700 oxidation slightly preceded maxima in photosynthesis. During a transition from low to high irradiance, the assimilatory force FA, which was calculated from ratios of dihydroxyacetone phosphate to phosphoglycerate under the assumption that the reactions catalyzed by NADP-dependent glyceraldehydephosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase are close to equilibrium, oscillated in parallel with photosynthesis. However, only one of its components, the calculated phosphorylation potential (ATP)/(ADP)(Pi), paralleled photosynthesis, whereas calculated NADPH/NADP ratios exhibited antiparallel behaviour. When photosynthetic oscillations were initiated by a transition from low to high CO2, the assimilatory force FA declined, was very low at the first minimum of photosynthesis and increased as photosynthesis rose to its second maximum. The observations indicate that the minima in photosynthesis are caused by lack of ATP. This leads to overreduction of the electron-transport chain which is indicated by the reduction of P700. During photosynthetic oscillations the chloroplast thylakoid system is unable to adjust the supply of ATP and NADPH rapidly to demand at the stoichiometric relationship required by the carbonreduction cycle.Abbreviations PGA 3-phosphoglycerate - DHAP dihydroxyacetone phosphate - P700 electron-donor pigment in the reaction enter of PS I - QA quinone acceptor in the reaction center of PS II This work received support from the Estonian Academy of Sciences, the Bavarian Ministry of Science and Art and the Sonderforschungsbereich 251 of the University of Würzburg. We are grateful for criticism by D.A. Walker, Robert Hill Institute, University of Sheffield, U.K. and by Mark Stitt, Institute of Botany, University of Heidelberg, FRG.  相似文献   
8.
Pyruvate oxidase from Lactobacillus plantarum is a homotetrameric flavoprotein with strong binding sites for FAD, TPP, and a divalent cation. Treatment with acid ammonium sulfate in the presence of 1.5 M KBr leads to the release of the cofactors, yielding the stable apoenzyme. In the present study, the effects of FAD, TPP, and Mn2+ on the structural properties of the apoenzyme and the reconstitution of the active holoenzyme from its constituents have been investigated. As shown by circular dichroism and fluorescence emission, as well as by Nile red binding, the secondary and tertiary structures of the apoenzyme and the holoenzyme do not exhibit marked differences. The quaternary structure is stabilized significantly in the presence of the cofactors. Size-exclusion high-performance liquid chromatography and analytical ultracentrifugation demonstrate that the holoenzyme retains its tetrameric state down to 20 micrograms/mL, whereas the apoenzyme shows stepwise tetramer-dimer-monomer dissociation, with the monomer as the major component, at a protein concentration of < 20 micrograms/mL. In the presence of divalent cations, the coenzymes FAD and TPP bind to the apoenzyme, forming the inactive binary FAD or TPP complexes. Both FAD and TPP affect the quaternary structure by shifting the equilibrium of association toward the dimer or tetramer. High FAD concentrations exert significant stabilization against urea and heat denaturation, whereas excess TPP has no effect. Reconstitution of the holoenzyme from its components yields full reactivation. The kinetic analysis reveals a compulsory sequential mechanism of cofactor binding and quaternary structure formation, with TPP binding as the first step. The binary TPP complex (in the presence of 1 mM Mn2+/TPP) is characterized by a dimer-tetramer equilibrium transition with an association constant of Ka = 2 x 10(7) M-1. The apoenzyme TPP complex dimer associates with the tetrameric holoenzyme in the presence of 10 microM FAD. This association step obeys second-order kinetics with an association rate constant k = 7.4 x 10(3) M-1 s-1 at 20 degrees C. FAD binding to the tetrameric binary TPP complex is too fast to be resolved by manual mixing.  相似文献   
9.
Point mutations in the gene of pyruvate oxidase from Lactobacillus plantarum, with proline residue 178 changed to serine, serine 188 to asparagine, and alanine 458 to valine, as well as a combination of the three single point mutations, lead to a significant functional stabilization of the protein. The enzyme is a tetrameric flavoprotein with tightly bound cofactors, FAD, TPP, and divalent metal ions. Thus, stabilization may be achieved either at the level of tertiary or quaternary interactions, or by enhanced cofactor binding. In order to discriminate between these alternatives, unfolding, dissociation, and cofactor binding of the mutant proteins were analyzed. The point mutations do not affect the secondary and tertiary structure, as determined by circular dichroism and protein fluorescence. Similarly, the amino acid substitutions neither modulate the enzymatic properties of the mutant proteins nor do they stabilize the structural stability of the apoenzymes. This holds true for both the local and the global structure with unfolding transitions around 2.5 M and 5 M urea, respectively. On the other hand, deactivation of the holoenzyme (by urea or temperature) is significantly decreased. The most important stabilizing effect is caused by the Ala-Val exchange in the C-terminal domain of the molecule. Its contribution is close to the value observed for the triple mutant, which exhibits maximum stability, with a shift in the thermal transition of ca. 10 degrees C. The effects of the point mutations on FAD binding and subunit association are interconnected. Because FAD binding is linked to oligomerization, the stability of the mutant apoenzyme-FAD complexes is increased. Accordingly, mutants with maximum apparent FAD binding exhibit maximum stability. Analysis of the quaternary structure of the mutant enzymes in the absence and in the presence of coenzymes gives clear evidence that both improved ligand binding and subunit interactions contribute to the observed thermal stabilization.  相似文献   
10.
We describe a new model for synchronization of neuronal oscillators that is based on the observation that certain species of fireflies are able to alter their free-running period. We show that by adding adaptation to standard oscillator models it is possible to observe the frequency alteration. One consequence of this is the perfect synchrony between coupled oscillators. Stability and some analytic results are included along with numerical simulations.This work was partially supported by NSF Grant DMS9002028 and the Mathematical Research Branch of The National Institutes of Health  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号