首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   0篇
  国内免费   1篇
  2021年   1篇
  2018年   2篇
  2013年   2篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   6篇
  2007年   7篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2002年   1篇
  1997年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
It is impossible to measure the diffusion coefficient of macromolecules directly and accurately by quasi—elastic light scattering, when aggregates cannot be eliminated from the solutions to be investigated. Nevertheless, a simple method can be applied to overcome this problem in many cases. Aggregates are separated from the monomeric macromolecules by rate-zonal sedimentation in a CsCl density gradient in a transparent centrifugation tube; the monomers are then located by laser light scattering intensity measurements; photon correlation spectroscopy of the scattered light finally yields their diffusion coefficient. The viscosity of aqueous CsCl solutions at different temperatures and concentrations allows a good separation by centrifugation and a low uncertainty in the reduction of the measured diffusion coefficient to standard conditions.The application of the method to eukaryotic large ribosomal subunits is described as an example.  相似文献   
2.
Deamidation is a prevalent modification of crystallin proteins in the vertebrate lens. The effect of specific sites of deamidation on crystallin stability in vivo is not known. Using mass spectrometry, a previously unreported deamidation in beta B1-crystallin was identified at Gln146. Another deamidation was investigated at Asn157. It was determined that whole soluble beta B1 contained 13%-17% deamidation at Gln146 and Asn157. Static and quasi-elastic laser light scattering, circular dichroism, and heat aggregation studies were used to explore the structure and associative properties of recombinantly expressed wild-type (wt) beta B1 and the deamidated beta B1 mutants, Q146E and N157D. Dimer formation occurred for wt beta B1, Q146E, and N157D in a concentration-dependent manner, but only Q146E showed formation of higher ordered oligomers at the concentrations studied. Deamidation at Gln146, but not Asn157, led to an increased tendency of beta B1 to aggregate upon heating. We conclude that deamidation creates unique effects depending upon where the deamidation is introduced in the crystallin structure.  相似文献   
3.
We have investigated the influence of the neurotoxic Alzheimer's disease peptide amyloid-β (25-35) on the dynamics of phospholipid membranes by means of quasi-elastic neutron scattering in the picosecond time-scale. Samples of pure phospholipids (DMPC/DMPS) and samples with amyloid-β (25-35) peptide included have been compared. With two different orientations of the samples the directional dependence of the dynamics was probed. The sample temperature was varied between 290 K and 320 K to cover both the gel phase and the liquid-crystalline phase of the lipid membranes. The model for describing the dynamics combines a long-range translational diffusion of the lipid molecules and a spatially restricted diffusive motion. Amyloid-β (25-35) peptide affects significantly the ps-dynamics of oriented lipid membranes in different ways. It accelerates the lateral diffusion especially in the liquid-crystalline phase. This is very important for all kinds of protein-protein interactions which are enabled and strongly influenced by the lateral diffusion such as signal and energy transducing cascades. Amyloid-β (25-35) peptide also increases the local lipid mobility as probed by variations of the vibrational motions with a larger effect in the out-of-plane direction. Thus, the insertion of amyloid-β (25-35) peptide changes not only the structure of phospholipid membranes as previously demonstrated by us employing neutron diffraction (disordering effect on the mosaicity of the lipid bilayer system) but also the dynamics inside the membranes. The amyloid-β (25-35) peptide induced membrane alteration even at only 3 mol% might be involved in the pathology of Alzheimer's disease as well as be a clue in early diagnosis and therapy.  相似文献   
4.
Archaeal H(+)-ATPase (A-ATPase) is composed of an A(1) region that hydrolyzes ATP and an integral membrane part A(0) that conducts protons. Subunit E is a component of peripheral stator(s) that physically links A(1) and A(0) parts of the A-ATPase. Here we report the first crystal structure of subunit E of A-ATPase from Pyrococcus horikoshii OT3 at 1.85 A resolution. The protomer structure of subunit E represents a novel fold. The quaternary structure of subunit E is a homodimer, which may constitute the core part of the stator. To investigate the relationship with other stator subunit H, the complex of subunits EH was prepared and characterized using electrophoresis, mass spectrometry, N-terminal sequencing and circular dichroism spectroscopy, which revealed the polymeric and highly helical nature of the EH complex with equimolar stoichiometry of both the subunits. On the basis of the modular architecture of stator subunits, it is suggested that both cytoplasm and membrane sides of the EH complex may interact with other subunits to link A(1) and A(0) parts.  相似文献   
5.
Cataract is a visible opacity in the lens substance, which, when located on the visual axis, leads to visual loss. Age-related cataract is a cause of blindness on a global scale involving genetic and environmental influences. With ageing, lens proteins undergo non-enzymatic, post-translational modification and the accumulation of fluorescent chromophores, increasing susceptibility to oxidation and cross-linking and increased light-scatter. Because the human lens grows throughout life, the lens core is exposed for a longer period to such influences and the risk of oxidative damage increases in the fourth decade when a barrier to the transport of glutathione forms around the lens nucleus. Consequently, as the lens ages, its transparency falls and the nucleus becomes more rigid, resisting the change in shape necessary for accommodation. This is the basis of presbyopia. In some individuals, the steady accumulation of chromophores and complex, insoluble crystallin aggregates in the lens nucleus leads to the formation of a brown nuclear cataract. The process is homogeneous and the affected lens fibres retain their gross morphology. Cortical opacities are due to changes in membrane permeability and enzyme function and shear-stress damage to lens fibres with continued accommodative effort. Unlike nuclear cataract, progression is intermittent, stepwise and non-uniform.  相似文献   
6.
Repeat in toxin (RTX) motifs are nonapeptide sequences found among numerous virulence factors of Gram-negative bacteria. In the presence of calcium, these RTX motifs are able to fold into an idiosyncratic structure called the parallel β-roll. The adenylate cyclase toxin (CyaA) produced by Bordetella pertussis, the causative agent of whooping cough, is one of the best-characterized RTX cytolysins. CyaA contains a C-terminal receptor domain (RD) that mediates toxin binding to the eukaryotic cell receptor. The receptor-binding domain is composed of about forty RTX motifs organized in five successive blocks (I to V). The RTX blocks are separated by non-RTX flanking regions of variable lengths. It has been shown that block V with its N- and C-terminal flanking regions constitutes an autonomous subdomain required for the toxicity of CyaA. Here, we investigated the calcium-induced biophysical changes of this subdomain to identify the respective contributions of the flanking regions to the folding process of the RTX motifs. We showed that the RTX polypeptides, in the absence of calcium, exhibited the hallmarks of intrinsically disordered proteins and that the C-terminal flanking region was critical for the calcium-dependent folding of the RTX polypeptides, while the N-terminal flanking region was not involved. Furthermore, the secondary and tertiary structures were acquired concomitantly upon cooperative binding of several calcium ions. This suggests that the RTX polypeptide folding is a two-state reaction, from a calcium-free unfolded state to a folded and compact conformation, in which the calcium-bound RTX motifs adopt a β-roll structure. The relevance of these results to the toxin physiology, in particular to its secretion, is discussed.  相似文献   
7.
Non-structural protein 9 (Nsp9) of coronaviruses is believed to bind single-stranded RNA in the viral replication complex. The crystal structure of Nsp9 of human coronavirus (HCoV) 229E reveals a novel disulfide-linked homodimer, which is very different from the previously reported Nsp9 dimer of SARS coronavirus. In contrast, the structure of the Cys69Ala mutant of HCoV-229E Nsp9 shows the same dimer organization as the SARS-CoV protein. In the crystal, the wild-type HCoV-229E protein forms a trimer of dimers, whereas the mutant and SARS-CoV Nsp9 are organized in rod-like polymers. Chemical cross-linking suggests similar modes of aggregation in solution. In zone-interference gel electrophoresis assays and surface plasmon resonance experiments, the HCoV-229E wild-type protein is found to bind oligonucleotides with relatively high affinity, whereas binding by the Cys69Ala and Cys69Ser mutants is observed only for the longest oligonucleotides. The corresponding mutations in SARS-CoV Nsp9 do not hamper nucleic acid binding. From the crystal structures, a model for single-stranded RNA binding by Nsp9 is deduced. We propose that both forms of the Nsp9 dimer are biologically relevant; the occurrence of the disulfide-bonded form may be correlated with oxidative stress induced in the host cell by the viral infection.  相似文献   
8.
With the high number of patients infected by tuberculosis and the sharp increase of drug-resistant tuberculosis cases, developing new drugs to fight this disease has become increasingly urgent. In this context, analogs of the naturally occurring enolphosphates Cyclipostins and Cyclophostin (CyC analogs) offer new therapeutic opportunities. The CyC analogs display potent activity both in vitro and in infected macrophages against several pathogenic mycobacteria including Mycobacterium tuberculosis and Mycobacterium abscessus. Interestingly, these CyC inhibitors target several enzymes with active-site serine or cysteine residues that play key roles in mycobacterial lipid and cell wall metabolism. Among them, TesA, a putative thioesterase involved in the synthesis of phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs), has been identified. These two lipids (PDIM and PGL) are non-covalently bound to the outer cell wall in several human pathogenic mycobacteria and are important virulence factors. Herein, we used biochemical and structural approaches to validate TesA as an effective pharmacological target of the CyC analogs. We confirmed both thioesterase and esterase activities of TesA, and showed that the most active inhibitor CyC17 binds covalently to the catalytic Ser104 residue leading to a total loss of enzyme activity. These data were supported by the X-ray structure, obtained at a 2.6-Å resolution, of a complex in which CyC17 is bound to TesA. Our study provides evidence that CyC17 inhibits the activity of TesA, thus paving the way to a new strategy for impairing the PDIM and PGL biosynthesis, potentially decreasing the virulence of associated mycobacterial species.  相似文献   
9.
It is commonly assumed that essentially all of the water in cells has the same ideal motional and colligative properties as does water in bulk liquid state. This assumption is used in studies of volume regulation, transmembrane movement of solutes and electrical potentials, solute and solution motion, solute solubility and other phenomena. To get at the extent and the source of non-ideally behaved water (an operational term dependent on the measurement method), we studied the motional and colligative properties of water in cells, in solutions of amino acids and glycine peptides whose surface characteristics are known, and in solution of bovine serum albumin, hemoglobin and some synthetic polypeptides. Solutions of individual amino acids with progressively larger hydrophobic side chains showed one perturbed water molecule (structured-slowed in motion) per nine square angstroms of hydrophobic surface area. Water molecules adjacent to hydrophobic surfaces form pentagonal structural arrays, as shown by X-ray diffraction studies, that are reported to be disrupted by heat, electric field, hydrostatic pressure and phosphorylation state. Hydrophilic amino acids demonstrated water destructuring (increased motion) that was attributed to dielectric realignment of dipolar water molecules in the electric field between charge groups. In solutions of proteins, several methods indicate the equivalent of 2–8 layers of structured water molecules extending beyond the protein surface, and we have recently demonstrated that induced protein conformational change modifies the extent of non-ideally behaved water. Water self-diffusion rate as measured in three different cell types was about half that of bulk water, indicating that most of the water in these cells was slower in motion than bulk water. In different cell types the extent of osmotically perturbed water ranged from less than half to almost all of the intracellular water. The assumption that essentially all intracellular water has ideal osmotic and motional behavior is not supported by the experimental findings. The non-ideality of cell water is an operational term. Therefore, the amount of non-ideally behaving water is dependent on the characteristics of water targeted, i.e. the measurement method, and a large fraction of it is explainable in mechanistic terms at a molecular level based on solute—solvent interactions.  相似文献   
10.
Ra-KLP, a 75 amino acid protein secreted by the salivary gland of the brown ear tick Rhipicephalus appendiculatus has a sequence resembling those of Kunitz/BPTI proteins. We report the detection, purification and characterization of the function of Ra-KLP. In addition, determination of the three-dimensional crystal structure of Ra-KLP at 1.6 Å resolution using sulphur single-wavelength anomalous dispersion reveals that much of the loop structure of classical Kunitz domains, including the protruding protease-binding loop, has been replaced by β-strands. Even more unusually, the N-terminal portion of the polypeptide chain is pinned to the ”Kunitz head” by two disulphide bridges not found in classical Kunitz/BPTI proteins. The disulphide bond pattern has been further altered by the loss of the bridge that normally stabilizes the protease-binding loop. Consistent with the conversion of this loop into a β-strand, Ra-KLP shows no significant anti-protease activity; however, it activates maxiK channels in an in vitro system, suggesting a potential mechanism for regulating host blood supply during feeding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号