首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1578篇
  免费   169篇
  国内免费   44篇
  1791篇
  2024年   9篇
  2023年   29篇
  2022年   25篇
  2021年   17篇
  2020年   35篇
  2019年   55篇
  2018年   86篇
  2017年   55篇
  2016年   47篇
  2015年   35篇
  2014年   93篇
  2013年   113篇
  2012年   41篇
  2011年   88篇
  2010年   109篇
  2009年   136篇
  2008年   137篇
  2007年   133篇
  2006年   108篇
  2005年   52篇
  2004年   44篇
  2003年   37篇
  2002年   28篇
  2001年   20篇
  2000年   20篇
  1999年   22篇
  1998年   17篇
  1997年   19篇
  1996年   14篇
  1995年   18篇
  1994年   19篇
  1993年   18篇
  1992年   18篇
  1991年   17篇
  1990年   11篇
  1989年   17篇
  1988年   6篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1984年   9篇
  1983年   5篇
  1982年   6篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有1791条查询结果,搜索用时 9 毫秒
1.
Effect of high-intensity endurance training on isokinetic muscle power   总被引:1,自引:0,他引:1  
The purpose of this study was to determine the effects of high-intensity endurance training on isokinetic muscle power. Six male students majoring in physical-education participated in high intensity endurance training on a cycle ergometer at 90% of maximal oxygen uptake (VO2max) for 7 weeks. The duration of the daily exercise session was set so that the energy expenditure equalled 42 kJ.kg-1 of lean body mass. Peak knee extension power was measured at six different speeds (30 degrees, 60 degrees, 120 degrees, 180 degrees, 240 degrees, and 300 degrees.s-1) with an isokinetic dynamometer. After training, VO2max increased significantly from mean values of 51.2 ml.kg-1.min-1, SD 6.5 to 56.3 ml.kg-1.min-1, SD 5.3 (P less than 0.05). Isokinetic peak power at the lower test speeds (30 degrees, 60 degrees and 120 degrees.s-1) increased significantly (P less than 0.05). However, no significant differences in muscle peak power were found at the faster velocities of 180 degrees, 240 degrees, and 300 degrees.s-1. The percentage improvement was dependent on the initial muscle peak power of each subject and the training stimulus (intensity of cycle ergometer exercise).  相似文献   
2.
A recently introduced approach far estimating the photosynthetic quantum efficiency (φ) of a freshwater or marine phytoplankton community has been applied for the first time to high latitude polar ecosystems, namely four lakes of southern Victoria Land, Antarctica. Values for φ at various depths ranged from 0.0022–0.1560 when calculated using a recommended mean extinction coefficient for phytoplankton (i.e. k?c= 0.016). By contrast, φ ranged from 0.0037–0.0760 when calculated using an empirically estimated value for k?c of 0.0328. If the recommended k?c= 0.016 more closely approaches an accurate estimate, then the φ valves indicate that the phytoplankton convert light to organic carbon more efficiently than elsewhere. However, if the empirically derived k?c= 0.0328 more closely approaches an accurate estimate, then the φ values indicate the phytoplankton trap light more efficiently than elsewhere. Although we have not resolved whether light conversion (φ) or light trapping are more efficient, the results show that the phytoplankton of these Antarctic lakes are well adapted to performing photosynthesis under extremely low light conditions.  相似文献   
3.
Bioluminescence of euphausiids takes place when a fluorescent tetrapyrrole F and a highly unstable protein P react in the presence of oxygen. A previous study on the euphausiid Meganyctiphanes norvegica indicated that F acts as a catalyst and P is consumed in the luminescence reaction, differing from the luminescence system of dinoflagellates in which a tetrapyrrole luciferin, nearly identical to F, is enzymatically oxidized in the presence of dinoflagellate luciferase. In the present study, P was extracted from Euphausia pacifica as well as from M. norvegica, then purified separately by affinity chromatography on a column of biliverdin–Sepharose 4B, completing the whole process in less than 5h. The samples of P obtained from both species had a molecular weight of 600,000, a purity of about 80%, and a specific activity 50–100 times greater than that previously found. The activity of P rapidly decreased in solutions, even at 0°C, and the inactivation of P derived from M. norvegica was more than four times faster than that derived from E. pacifica. The kinetics of the luminescence reaction was investigated with F and P whose concentrations were systematically varied. The reaction was characteristically slow and involved two different reaction rates; the turnover number at 0°C was 30/h for the initial 20 min and 20/h after the initial 1 h. The total light emitted in a 50-h period indicated that the bioluminescence quantum yield of F was about 0.6 at 0°C, and P recycled many times in the luminescence reaction. Thus, the present results conclusively show that F is a luciferin and P is a luciferase of an unusually slow-working type, contrary to early report.  相似文献   
4.
The effects of extreme phosphate (Pi) deficiency during growth on the contents of adenylates and pyridine nucleotides and the in vivo photochemical activity of photosystem II (PSII) were determined in leaves of Helianthus annuus and Zea mays grown under controlled environmental conditions. Phosphate deficiency decreased the amounts of ATP and ADP per unit leaf area and the adenylate energy charge of leaves. The amounts of oxidized pyridine nucleotides per unit leaf area decreased with Pi deficiency, but not those of reduced pyridine nucleotides. This resulted in an increase in the ratio of reduced to oxidized pyridine nucleotides in Pi-deficient leaves. Analysis of chlorophyll a fluorescence at room temperature showed that Pi deficiency decreased the efficiency of excitation capture by open PSII reaction centres (φe), the in vivo quantum yield of PSII photochemistry (φPSII) and the photochemical quenching co-efficient (qP), and increased the non-photochemical quenching co-efficient (qN) indicating possible photoinhibitory damage to PSII. Supplying Pi to Pi-deficient sunflower leaves reversed the long-term effects of Pi-deficiency on PSII photochemistry. Feeding Pi-sufficient sunflower leaves with mannose or FCCP rapidly produced effects on chlorophyll a fluorescence similar to long-term Pi-deficiency. Our results suggest a direct role of Pi and photophosphorylation on PSII photochemistry in both long-and short-term responses of photosynthetic machinery to Pi deficiency. The relationship between φPSII and the apparent quantum yield of CO2 assimilation determined at varying light intensity and 21 kPa O2 and 35 Pa CO2 partial pressures in the ambient air was linear in Pi-sufficient and Pi-deficient leaves of sunflower and maize. Calculations show that there was relatively more PSII activity per mole of CO2 assimilated by the Pi-deficient leaves. This indicates that in these leaves a greater proportion of photosynthetic electrons transported across PSII was used for processes other than CO2 reduction. Therefore, we conclude that in vivo photosynthetic electron transport through PSII did not limit photosynthesis in Pi-deficient leaves of sunflower and maize and that the decreased CO2 assimilation was a consequence of a smaller ATP content and lower energy charge which restricted production of ribulose, 1-5, bisphosphate, the acceptor for CO2.  相似文献   
5.
Wheat leaves were exposed to light treatments that excite preferentially Photosystem I (PS I) or Photosystem II (PS II) and induce State 1 or State 2, respectively. Simultaneous measurements of CO2 assimilation, chlorophyll fluorescence and absorbance at 820 nm were used to estimate the quantum efficiencies of CO2 assimilation and PS II and PS I photochemistry during State transitions. State transitions were found to be associated with changes in the efficiency with which an absorbed photon is transferred to an open PS II reaction centre, but did not correlate with changes in the quantum efficiencies of PS II photochemistry or CO2 assimilation. Studies of the phosphorylation status of the light harvesting chlorophyll protein complex associated with PS II (LHC II) in wheat leaves and using chlorina mutants of barley which are deficient in this complex demonstrate that the changes in the effective antennae size of Photosystem II occurring during State transitions require LHC II and correlate with the phosphorylation status of LHC II. However, such correlations were not found in maize leaves. It is concluded that State transitions in C3 leaves are associated with phosphorylation-induced modifications of the PS II antennae, but these changes do not serve to optimise the use of light absorbed by the leaf for CO2 assimilation.Abbreviations Fm, Fo, Fv maximal, minimal and variable fluorescence yields - Fm, Fv maximal and variable fluorescence yields in a light adapted state - LHC II light harvesting chlorophyll a/b protein complex associated with PS II - qP photochemical quenching - A820 light-induced absorbance change at 820 nm - PS I, PS II relative quantum efficiencies of PS I and PS II photochemistry - CO 2 quantum yield of CO2 assimilation  相似文献   
6.
7.
A computerized oxygen electrode Astern was used to make rapid and accurate measurements of photosynthetic light and dissolved inorganic carbon (DIC) response cures with a macroalga. Ulva rotundata Blid. was grown in an outdoor, continuous flow system in seawater under sunlight or 9% of sunlight at Beaufort, North Carolina. The light compensation points in the shade- and sun-grown plants, measured in seawater, were at photon flux densities (PFDs) of 16 and 27 μmol. Photons·m?2·s?1, respectively but the quantum yield of O2 evolution was not significantly different. Rates of photosynthesis in seawater per unit area of thallus under saturating light and rates of dark respiration were about 1.5-fold higher in sun- than in shade-grown plants. The concentration of DIC in seawater (approximately 2 mM) limited photosynthesis at absorbed PFDs above 60–70 μmol photons·m?2·s?1 Addition of 20 mM inorganic carbon had no effect on quantum yield but caused about a 1.5-fold increase in the light-saturated photosynthetic rate in both shade- and sun-grown Ulva. The effect of DIC supplementation was greatest in plants grown in October and least in plants grown in June. The light- and DIC-saturated rate of photosynthesis in seawater was similar to the maximum rate obtained by exposing Ulva to 10% CO2, in the gas phase. The carbon isotope values (δ13C, reflecting the 13C/12C ratio compared to a standard) of Ulva grown in the same seawater supply were dependent on light and agitation. Samples from Beaufort Inlet were more negative (δ13C value, ?20.03‰) than those grown in bright light with agitation (δ13C value, ?17.78‰ outdoors; ?17.23‰ indoors), which may indicate DIC supply limited carbon uptake in seawater.  相似文献   
8.
The effect of steady-state nitrogen limitation on photo-synthetic characteristics and growth efficiency was examined in the marine haptophyte Isochrysis galbana Green. Nitrate limited chemostats were maintained at nine dilution rates, ranging from 0.18-0.96 d?1, under continuous irradiance levels of 175 μmole quanta·m?2·s?1, an irradiance level which saturated photosynthesis at all growth rates. Nitrogen limitation led to an overall reduction in pigmentation and a decrease in the cellular concentration of reaction centers; however, the optical absorption cross section, normalized to Chl a, increased. Moreover, Chl c/a ratios were higher in nitrogen-limited cells: the change in Chl c/a ratios were correlated with an increase in the functional size of Photosystem II. Both light saturated photosynthetic rates normalized per cell and specific respiratory losses were positively linearly correlated with growth rate. Light saturated photosynthetic rates normalized to Chl a remained relatively insensitive to the rate of nitrogen supply. The minimum quantum requirement for gross photosynthetic oxygen evolution increased from 12.4 to 17.0 quanta/O2. At the growth irradiance, the quantum requirement increased 88%, from 19.9 to 37.5 quauta/O2 Photosynthesis/respiration ratios remained relatively constant at dilution rates greater than 35% of the maximum relative growth rate. Consequently, net growth efficiency, defined as the ratio of the specific growth rate, μ, to specific gross photosynthesis, P, also remained relatively constant over this range of growth rates averaging 85 ± 3%.  相似文献   
9.
Light-saturated photosynthesis (Pmax) of Emiliania huxleyi (Lohmann) Hay et Mohler is known to be carbonlimited at natural concentrations of dissolved inorganic carbon (DIC). In the present study, light-limited and light-saturated photosynthetic rates of E. huxleyi were studied at three concentrations of DIC (2.4, 7.4, and 12.4 mM) for high-calcite (Cin/Ctot=0.48) and low-calcite (Cin/Ctot=0.08) cells of the same strain. The photosynthetic efficiency (α) and the maximum quantum yieldmax)A increased by more than a factor of 2 from the lowest to the highest DIC level. Pmax a, and θmax were always higher for the high-calcite than for the low-calcite cells at identical DIC levels. This may indicate that the calcifcation process acts as an extra supplier of CO2 for photosynthesis making the CO2 shortage at natural DIC levels a little smaller for high-calcite than for low-calcite E. huxleyi. A dependency of θmax on DIC has not previously been shown for marine phytoplankton. θmax is a key parameter in recent biooptical models of phytoplankton productivity, and the results from the present study are therefore important for modeling the productivity of E. huxleyi.  相似文献   
10.
This is the first report of spontaneous bioluminescence in the autotrophic dinoflagellate Ceratocorys horrida von Stein. Bioluminescence was measured, using an automated data acquisition system, in a strain of cultured cells isolated from the Sargasso Sea. Ceratocorys horrida is only the second dinoflagellate species to exhibit rhythmicity in the rate of spontaneous flashing, flash quantum flux (intensity), and level of spontaneous glowing. The rate of spontaneous flashing was maximal during hours 2–4 of the dark phase [i.e. circadian time (CT)16–18 for a 14:10 h LD cycle (LD14:10)], with approximately 2% of the population flashing-min?1, a rate approximately one order of magnitude greater than that of the dinoflagellate Gonyaulax polyedra. Flash quantum flux was also maximal during this period. Spontaneous flashes were 134 ms in duration with a maximum flux (intensity) of 3.1×109 quanta-s?1. Light emission presumably originated from blue fluorescent microsources distributed in the cell periphery and not from the spines. Values of both spontaneous flash rate and maximum flux were independent of cell concentration. Isolated cells also produced spontaneous flashes. Spontaneous glowing was dim except for a peak of 6.4× 104quanta-s?1 cell?1, which occurred at CT22.9 for LD14:10 and at CT22.8 for LD12:12. The total integrated emission of spontaneous flashing and glowing during the dark phase was 4×109 quantacell?1, equivalent to the total stimulable luminescence. The rhythms for C. horrida flash and glow behavior were similar to those of Gonyaulax polyedra, although flash rate and quantum flux were greater. Spontaneous bioluminescence in C. horrida may be a circadian rhythm because it persisted for at least three cycles in constant dark conditions. This is also the first detailed study of the stimulated bioluminescence of C. horrida, which also displayed a diurnal rhythm. Cultures exhibited >200 times more mechanically stimulated bioluminescence during the dark phase than during the light phase. Mechanical stimulation during the dark phase resulted in 6.7 flashes. cell?1; flashes were brighter and longer in duration than spontaneous flashes. Cruise-collected cells exhibited variability in quantum flux with few differences in flash kinetics. The role of dinoflagellate spontaneous bioluminescence in the dynamics of near-surface oceanic communities is unknown, but it may be an important source of natural in situ bioluminescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号