首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  2024年   1篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2013年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2002年   1篇
  1996年   2篇
  1994年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
We describe segment angles (trunk, thigh, shank, and foot) and joint angles (hip, knee, and ankle) for the hind limbs of bonobos walking bipedally ("bent-hip bent-knee walking," 17 sequences) and quadrupedally (33 sequences). Data were based on video recordings (50 Hz) of nine subjects in a lateral view, walking at voluntary speed. The major differences between bipedal and quadrupedal walking are found in the trunk, thigh, and hip angles. During bipedal walking, the trunk is approximately 33-41 degrees more erect than during quadrupedal locomotion, although it is considerably more bent forward than in normal human locomotion. Moreover, during bipedal walking, the hip has a smaller range of motion (by 12 degrees ) and is more extended (by 20-35 degrees ) than during quadrupedal walking. In general, angle profiles in bonobos are much more variable than in humans. Intralimb phase relationships of subsequent joint angles show that hip-knee coordination is similar for bipedal and quadrupedal walking, and resembles the human pattern. The coordination between knee and ankle differs much more from the human pattern. Based on joint angles observed throughout stance phase and on the estimation of functional leg length, an efficient inverted pendulum mechanism is not expected in bonobos.  相似文献   
2.
The authors previously compared energetic costs of bipedal and quadrupedal walking in bipedally trained macaques used for traditional Japanese monkey performances (Nakatsukasa et al. 2004 Am. J. Phys. Anthropol. 124:248-256). These macaques used inverted pendulum mechanics during bipedal walking, which resulted in an efficient exchange of potential and kinetic energy. Nonetheless, energy expenditure during bipedal walking was significantly higher than that of quadrupedal walking. In Nakatsukasa et al. (2004 Am. J. Phys. Anthropol. 124:248-256), locomotor costs were measured before subjects reached a steady state due to technical limitations. The present investigation reports sequential changes of energy consumption during 15 min of walking in two trained macaques, using carbon dioxide production as a proxy of energy consumption, as in Nakatsukasa et al. (2004 Am. J. Phys. Anthropol. 124:248-256). Although a limited number of sessions were conducted, carbon dioxide production was consistently greater during bipedal walking, with the exception of some irregularity during the first minute. Carbon dioxide production gradually decreased after 1 min, and both subjects reached a steady state within 10 min. Energy expenditure during bipedalism relative to quadrupedalism differed between the two subjects. It was considerably higher (140% of the quadrupedal walking cost) in one subject who walked with more bent-knee, bent-hip gaits. This high cost strongly suggests that ordinary macaques, who adopt further bent-knee, bent-hip gaits, consume a far greater magnitude of energy during bipedal walking.  相似文献   
3.
A comparative study of carpal joint structure and function in six Malagasy lemuriforms was undertaken to test predicted morphoclines in carpal joint morphology between pronograde and orthograde arboreal primates. Patterns of movement at the wrist during locomotion were observed and described for the lemuriform species Lemur fulvus and Propithecus verreauxi. Lemur fulvus, which assumes a pronograde posture during locomotion, extends and pronates the wrist during the support phase of quadrupedal walking and running stride cycles. Furthermore, the forearm of this species exhibits some transverse movement across the proximal wrist joint during the support phase. In contrast, the indriid Propithecus maintains the hand and wrist in a flexed and partially supinated position during vertical clinging and suspensory postures. Habitual quadrupedal and vertical postures in Malagasy primates are in turn related to very different patterns of carpal joint morphology and articular mechanics. Those lemurs which are predominantly pronograde share a series of structural features related to stabilizing the antebrachiocarpal joint during extension and mediolateral deviation and the midcarpal joint during pronation: an intraarticular labrum is present on the inner portion of the radiocarpal ligament, the radiocarpal articular surface is quite flat dorsoventrally, the capitate-trapezoid embrasure is expanded dorsally, and development of the radial and ulnar styloids is more pronounced. The wrists of Propithecus, Avahi, and Lepilemur (vertical clingers) differ from those of quadrupedal lemuriforms in possessing a suite of morphological features related to stabilizing the wrist during antebrachiocarpal flexion and midcarpal supination: the radiocarpal articular surface is deeply curved and tilted anteriorly, the dorsal radiocarpal ligament is very broad, thick, and fibrous, the hamate's triquetral facet is directed proximodistally, and the capitate-trapezoid embrasure is dorsally constricted and expanded palmarly. These observed contrasts in carpal form and function are used to define further the morphological features related to orthograde posture in several lineages of arboreal primates. © 1996 Wiley-Liss, Inc.  相似文献   
4.
5.
6.
7.
In two-dimensional (2D) kinematic studies, limb positions in three-dimensional (3D) space observed in lateral view are projected onto a 2D film plane. Elbow and knee-joint angles that are less than 20 degrees out-of-plane of lateral-view cameras generally exhibit very little measurable difference from their 3D counterparts (Plagenhoef 1979 Environment, Behavior, and Morphology; New York: Gustav Fisher, p. 95-118). However, when limb segment angles are more than 20 degrees out-of-plane, as is often the case in locomotor studies of arboreal primates, elbow and knee angles can appear significantly more extended than they actually are. For this reason, a methodology is described that corrects 2D out-of-plane angular estimates using a series of trigonometric transformations.  相似文献   
8.
Most mammals use lateral sequence gaits during quadrupedal locomotion, a pattern characterized by the touchdown of a forelimb directly following the ipsilateral hind limb in a given stride cycle. Primates, however, tend to use diagonal sequence (DS) gaits, whereby it is the touchdown of a contralateral forelimb that follows that of a given hind limb most closely in time. A number of scenarios have been offered to explain why primates favor DS gaits, most of them relating to the use of the arboreal habitat and, in particular, the exploitation of a narrow branch niche. This experimental study explores the potential explanation for the use of DS gaits by examining the relationship between branch diameter and gait patterns in 360 strides collected from six species of quadrupedal strepsirrhine primates on broad and narrow diameter supports. Gait sequence is quantified using limb phase, or the percentage of time during a stride cycle that a forelimb touchdown follows an ipsilateral hind limb touchdown. Although Loris, Nycticebus and Eulemur rubriventer individuals in this study did exhibit significantly lower locomotor velocities on narrower supports (P<0.01 in all three species), analyses of covariance showed no significant differences in limb phase values between broad and narrow diameter supports. Hence, results indicate surprisingly little evidence to suggest that alterations in gait sequence pattern provide a specific advantage for negotiating narrow supports.  相似文献   
9.
Tufted capuchin monkeys are known to use both quadrupedalism and bipedalism in their natural environments. Although previous studies have investigated limb kinematics and metabolic costs, their ground reaction forces (GRFs) and center of mass (CoM) mechanics during two and four‐legged locomotion are unknown. Here, we determine the hind limb GRFs and CoM energy, work, and power during bipedalism and quadrupedalism over a range of speeds and gaits to investigate the effect of differential limb number on locomotor performance. Our results indicate that capuchin monkeys use a “grounded run” during bipedalism (0.83–1.43 ms?1) and primarily ambling and galloping gaits during quadrupedalism (0.91–6.0 ms?1). CoM energy recoveries are quite low during bipedalism (2–17%), and in general higher during quadrupedalism (4–72%). Consistent with this, hind limb vertical GRFs as well as CoM work, power, and collisional losses are higher in bipedalism than quadrupedalism. The positive CoM work is 2.04 ± 0.40 Jkg?1 m?1 (bipedalism) and 0.70 ± 0.29 Jkg?1 m?1 (quadrupedalism), which is within the range of published values for two and four‐legged terrestrial animals. The results of this study confirm that facultative bipedalism in capuchins and other nonhuman primates need not be restricted to a pendulum‐like walking gait, but rather can include running, albeit without an aerial phase. Based on these results and similar studies of other facultative bipeds, we suggest that important transitions in the evolution of hominin locomotor performance were the emergences of an obligate, pendulum‐like walking gait and a bouncy running gait that included a whole‐body aerial phase. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号