首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   909篇
  免费   24篇
  国内免费   20篇
  953篇
  2023年   11篇
  2022年   25篇
  2021年   24篇
  2020年   22篇
  2019年   28篇
  2018年   23篇
  2017年   11篇
  2016年   16篇
  2015年   17篇
  2014年   40篇
  2013年   59篇
  2012年   23篇
  2011年   48篇
  2010年   24篇
  2009年   31篇
  2008年   31篇
  2007年   49篇
  2006年   31篇
  2005年   30篇
  2004年   31篇
  2003年   33篇
  2002年   33篇
  2001年   21篇
  2000年   15篇
  1999年   10篇
  1998年   8篇
  1997年   10篇
  1996年   19篇
  1995年   24篇
  1994年   13篇
  1993年   6篇
  1992年   15篇
  1991年   4篇
  1990年   14篇
  1989年   8篇
  1988年   11篇
  1987年   9篇
  1986年   5篇
  1985年   13篇
  1984年   13篇
  1983年   10篇
  1982年   9篇
  1981年   12篇
  1980年   14篇
  1979年   8篇
  1977年   7篇
  1976年   9篇
  1975年   7篇
  1974年   6篇
  1973年   7篇
排序方式: 共有953条查询结果,搜索用时 15 毫秒
1.
2.
Several aspects of energy metabolism (glucose utilization, lactate production,14CO2 production from labeled glucose, glutamate or pyruvate, oxygen consumption and contents of ATP and phosphocreatine) were measured in cerebellar granule cells (glutamatergic) in primary cultures and compared with corresponding data for cerebral cortical neurons (mainly GABA-ergic) and astrocytes. Cerebellar granule cells and astrocytes were metabolically more active than cerebral cortical neurons. Glutamate which is utilized as a major metabolic fuel as astrocytes and, to a lesser extent, in cerebral cortical neurons, was virtually not oxidized in cerebellar granule cells.Special Issue dedicated to Prof. Holger Hydén.  相似文献   
3.
To determine which of the major isoenzymes of pyruvate kinase pancreatic islet pyruvate kinase most resembled, it was compared to pyruvate kinase from other tissues in kinetic and immunologic studies. The pattern of activation by fructose bisphosphate and the patterns of inhibition by alanine and phenylalanine were most similar to those of the M2 isoenzyme from kidney and were dissimilar to those of the isoenzymes from skeletal muscle (type M1) and liver (type L). The islet pyruvate kinase was inhibited by anti-M1 pyruvate kinase serum (which crossreacts with the M2 isoenzyme), but not by anti-L pyruvate kinase. These results are most consistent with islets possessing predominantly, if not exclusively, the M2 isoenzyme of pyruvate kinase. We previously showed that rat pancreatic islet cytosol contains protein kinases that can catalyze a calcium-activated phosphorylation of an endogenous peptide that has properties, such as subunit molecular weight and isoelectric pH, that are identical to those of the M2 and M, isoenzymes of pyruvate kinase, and that islet cytosol can catalyze phosphorylation of muscle pyruvate kinase. In the present study it was shown that incubating islet cytosol with ATP under conditions known to permit phosphorylation and inhibition of liver pyruvate kinase did not affect the islet pyruvate kinase activity. It is concluded that phosphorylation of the islet pyruvate kinase has no immediate effect on enzyme activity.Abbreviations EGTA ethylene glycos his (-aminoethyl ether)-N,N,NN-tetraacetic acid - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  相似文献   
4.
1-β-D-Arabinofuranosylcytosine which interferes with DNA synthesis in bacteria and mammalian cells and brings about transformation of hamster embryo fibroblasts, has been found to inhibit the incorporation of N-Acetylneuraminic acid into glycolipids and glycoproteins of both normal and transformed hamster embryo cells in tissue culture. Three hours after commencement of treatment (10?3M ara-C), incorporation of [14C] thymidine into DNA was inhibited by 95 per cent, while incorporation of [3H] D-glycosamine (precursor of sialic acid) into glycolipids and glycoproteins was inhibited by 85 per cent. At 24 hours, the inhibition of incorporation of the two labelled components was 83 and 80 per cent respectively. In homogenates of both cell types, incorporation of [14C] N-acetylneuraminic acid was competitively inhibited by ara-CMP. Ara-C was found to have no effect on the incorporation of [14C] choline into phospholipids of cells grown in tissue culture. These results suggest that interference with DNA synthesis by ara-C may not be the only factor involved in cell transformation by this substance.  相似文献   
5.
To further elucidate the molecular basis of the selective damage to various brain regions by thiamin deficiency, changes in enzymatic activities were compared to carbohydrate flux through various pathways from vulnerable (mammillary bodies and inferior colliculi) and nonvulnerable (cochlear nuclei) regions after 11 or 14 days of pyrithiamin-induced thiamin deficiency. After 11 days,large decreases (–43 to –59%) in transketolase (TK) occurred in all 3 regions; 2-ketoglutarate dehydrogenase (KGDHC) declined (–45%), but only in mammillary bodies; pyruvate dehydrogenase (PDHC) was unaffected. By day 14, TK remained reduced by 58%–66%; KGDHC was now reduced in all regions (–48 to –55%); PDHC was also reduced (–32%), but only in the mammillary bodies. Thus, the enzyme changes did not parallel the pathological vulnerability of these regions to thiamin deficiency.14CO2 production from14C-glucose labeled in various positions was utilized to assess metabolic flux. After 14 days, CO2 production in the vulnerable regions declined severely (–46 to 70%) and approximately twice as much as those in the cochlear nucleus. Also by day 14, the ratio of enzymatic activity to metabolic flux increased as much as 56% in the vulnerable regions, but decreased 18 to 30% in the cochlear nuclei. These differences reflect a greater decrease in flux than enzyme activities in the two vulnerable regions. Thus, selective cellular responses to thiamin deficiency can be demonstrated ex vivo, and these changes can be directly related to alterations in metabolic flux. Since they cannot be related to enzymatic alterations in the three regions, factors other than decreases in the activity of these TPP-dependent enzymes must underlie selective vulnerability in this model of thiamin deficiency.Abbreviations KGDHC 2-ketoglutarate dehydrogenase complex EC 1.2.4.2., EC 2.3.1.61, EC 1.6.4.3. - PDHC pyruvate dehydrogenase complex EC 1.2.4.2., EC 2.3.1.12, EC 1.6.4.3 - TK transketolase (EC 2.2.1.1) - TPP thiamin pyrophosphate  相似文献   
6.
Activities of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) were measured in leaf extracts of field grown Amaranthus paniculatus L. (C4) during a natural diurnal irradiance and temperature pattern. Enzyme assays were run at both fixed (30°C) and the corresponding leaf temperature at the time of harvest. Light activation of PEP carboxylase (PEPCase) at fixed assay temperatures was expressed as a decrease in S0–5 (PEP) after a threshold (> 330 μmol m–2 s–1) photon fluence rate was surpassed at noon. Earlier in the morning, increase in apparent enzyme affinity for PEP was observed when the assay was run at leaf temperature, indicating a physiologically meaningfull effect of temperature on S0.5 (PEP). The 3.3-fold increase in PEPCase activity at low PEP and fixed assay temperature between the minimal and maximal irradiance and temperature hours of the day, became 12.8-, 11.5- and 7.4-fold when assays were run at the corresponding leaf temperature during three diurnal cycles with respective temperature differences (max minus min) of 9.0, 8.3 and 7.4°C. The extent of malate inhibition was the same for both day and night forms of PEPCase assayed at 35°C, but increased considerably with night enzyme at 25°C. The results indicate that light increases the apparent affinity of PEPCase for PEP and that at lower temperatures malate becomes more inhibitory. Pyruvate orthophosphate dikinase activity started to increase immediately after sunrise and the 10-fold increase at fixed temperature became 14.8-, 14.2- and 13.1-fold when assays were run at the above leaf temperatures. This indicates that the light effect predominates with pyruvate, orthophosphate dikinase, while with phosphoenolpyravate carboxylase, light and temperature co-operate to increase the day enzyme activities.  相似文献   
7.
This is the first report of the purification of tauropine dehydrogenase (NAD: tauropine oxidoreductase) from a polychaete worm. In the sandwormArabella iricolor Montagu (Polychaet: Errantia), two forms of TaDH were detected: major component (pl = 7.5) and minor one (pI = 6.4). The major TaDH component was purified to homogeneity by means of (NH4)2SO4 precipitation, anion-exchange, affinity, chromatofocusing and hydrophobic chromatography, and characterized. From the molecular mass of 43.7 kDa obtained by rapid gel-filtration and that of 43.5 kDa by SDS-PAGE, the sandworm enzyme appeared to be a monomeric protein. Maximum rates of reduction of pyruvate and oxidation of tauropine were observed at pH 7.0 and 8.5, respectively. Pyruvate and taurine were preferred substrate for the enzyme. Apparent Km values determined using constant co-substrate concentrations were: 35.7 mM, 0.34 mM, and 0.036 mM for taurine, pyruvate and NADH, respectively, in the tauropine synthesizing reaction; and 4.8 mM and 0.051 mM for tauropine and NAD+, respectively, in the tauropine oxidizing reaction. The tauropine synthesizing reaction was subject to substrate inhibition by pyruvate: maximum rate was observed at 2.5–3.0 mM (inhibitory range of pyruvate concentration producing half-maximal rate was 26.8 mM).  相似文献   
8.
When glucose was given to starved rats there was an increase in both 6-phosphofructo 2-kinase and pyruvate kinase activity and a decrease in fructose 2,6-bisphosphatase activity 30 min and 60 min later. These changes were accompanied by an increase in glycogen deposition and by modest, but significant increases in fructose 2,6-bisphosphate levels at the same time. Metabolite measurements indicated that flux through 6-phosphofructo 1-kinase and pyruvate kinase were increased. These results suggest that although glycogen deposition may occur via the gluconeogenic pathway, glycolysis is activated at the same time by changes in the phosphorylation state of key regulatory enzymes as well as by the small rise in fructose 2,6-bisphosphate.  相似文献   
9.
RNA synthesis during morphogenesis of the fungusMucor racemosus   总被引:6,自引:0,他引:6  
Bacteroides succinogenes produces acetate and succinate as major products of carbohydrate fermentation. An investigation of the enzymes involved indicated that pyruvate is oxidized by a flavin-dependent pyruvate cleavage enzyme to acetyl-CoA and CO2. Active CO2 exchange is associated with the pyruvate oxidation system. Reduction of flavin nucleotides is CoASH-dependent and does not require ferredoxin. Acetyl-CoA is further metabolized via acetyl phosphate to acetate and ATP. Reduced flavin nucleotide is used to reduce fumarate to succinate by a particulate flavin-specific fumarate reductase reaction which may involve cytochrome b. Phosphoenolpyruvate (PEP) is carboxylated to oxalacetate by a GDP-specific PEP carboxykinase. Oxalacetate, in turn, is converted to malate by a pyridine nucleotide-dependent malate dehydrogenase. The organism has a NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. The data suggest that reduced pyridine nucleotides generated during glycolysis are oxidized in malate formation and that the electrons generated during pyruvate oxidation are used to reduce fumarate to succinate.  相似文献   
10.
Activities of Phosphorylase, glyceraldehyde-3 -phosphate dehydrogenase, lactate dehydrogenase, malate dehydrogenase and succinate dehydrogenase in the rat endometrial tissue are significantly inhibited by an intrauterine copper device, while it stimulated glucose-6-phosphate dehydrogenase activity. The copper device decreased the lactate/pyruvate ratio in the tissue; pyruvate utilizationin vitro by the rat endometrium is also blocked by copper. These findings suggested that the normal carbohydrate metabolism of the tissue may be affected in presence of copper, thus resulting in a change of the endometrial function, which may be one of the factors responsible for the contraceptive and pharmacological action of an intrauterine copper device.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号