首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2023年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  1995年   1篇
  1989年   1篇
排序方式: 共有6条查询结果,搜索用时 312 毫秒
1
1.
Fluctations in luteinizing hormone are believed to consist of irregularly spaced sharp increases separated by periods of exponential decay. A simple method is presented for analysing such fluctuations when the data consist of uniformly sampled observations of hormone. Specific allowance for the exponential decay in the absence of pulses is made via a time series model before assessing the number and extent of pulses. All calculations are done using MINITAB regression programs. The results have been compared with those obtained by three established models and are in general agreement.  相似文献   
2.
Artery stiffening is known as an important pathological change that precedes small vessel dysfunction, but underlying cellular mechanisms are still elusive. This paper reports the development of a flow co-culture system that imposes a range of arterial-like pulse flow waves, with similar mean flow rate but varied pulsatility controlled by upstream stiffness, onto a 3-D endothelial-smooth muscle cell co-culture. Computational fluid dynamics results identified a uniform flow area critical for cell mechanobiology studies. For validation, experimentally measured flow profiles were compared to computationally simulated flow profiles, which revealed percentage difference in the maximum flow to be <10, <5, or <1% for a high, medium, or low pulse flow wave, respectively. This comparison indicated that the computational model accurately demonstrated experimental conditions. The results from endothelial expression of proinflammatory genes and from determination of proliferating smooth muscle cell percentage both showed that cell activities did not vary within the identified uniform flow region, but were upregulated by high pulse flow compared to steady flow. The flow system developed and characterized here provides an important tool to enhance the understanding of vascular cell remodeling under flow environments regulated by stiffening.

Electronic supplementary material

The online version of this article (doi:10.1007/s10616-012-9445-2) contains supplementary material, which is available to authorized users.  相似文献   
3.
Summary 1. The pulsatile release of luteinizing hormone-releasing hormone (LHRH) is critical for reproductive function. However, the exact mechanism of LHRH pulse generation is unclear. The purpose of this article is to review the current knowledge on LHRH pulse generation and to discuss a series of studies in our laboratory.2. Using push-pull perfusion in the stalk-median eminence of the rhesus monkey several important facts have been revealed. There is evidence indicating that LHRH neurons themselves have endogenous pulse-generating mechanisms but that the pulsatility of LHRH release is also modulated by input from neuropeptide Y (NPY) and norepinephrine (NE) neurons. The release of NPY and NE is pulsatile, with their pulses preceding or occurring simultaneously with LHRH pulses, and the neuroligands NPY and NE and their agonists stimulate LHRH pulses, while the antagonists of the ligands suppress LHRH pulses.3. The pulsatile release of LHRH increases during the estrogen-induced LH surge as well as the progesterone-induced LH surge. These increases are partly due to the stimulatory effects of estrogen and progesterone on NPY neurons.4. An increase in pulsatile LHRH release occurs at the onset of puberty. This pubertal increase in LHRH release appears to be due to the removal of tonic inhibition from aminobutyric acid (GABA) neurons and a subsequent increase in the inputs of NPY and NE neurons to LHRH neurons.5. There are indications that additional neuromodulators are involved in the control of the LHRH pulse generation and that glia may play a role in coordinating pulses of the release of LHRH and neuromodulators.6. It is concluded that the mechanism generating LHRH pulses appears to comprise highly complex cellular elements in the hypothalamus. The study of neuronal and nonneuronal elements of LHRH pulse generation may serve as a model to study the oscillatory behavior of neurosecretion.  相似文献   
4.
Fluctations in luteinizing hormone are believed to consist of irregularly spaced sharp increases separated by periods of exponential decay. A simple method is presented for analysing such fluctuations when the data consist of uniformly sampled observations of hormone. Specific allowance for the exponential decay in the absence of pulses is made via a time series model before assessing the number and extent of pulses. All calculations are done using MINITAB regression programs. The results have been compared with those obtained by three established models and are in general agreement.  相似文献   
5.
Pulmonary arterial hypertension (PAH) is a disease affecting distal pulmonary arteries (PA). These arteries are deformed, leading to right ventricular failure. Current treatments are limited. Physiologically, pulsatile blood flow is detrimental to the vasculature. In response to sustained pulsatile stress, vessels release nitric oxide (NO) to induce vasodilation for self-protection. Based on this observation, this study developed a protocol to assess whether an artificial pulmonary pulsatile blood flow could induce an NO-dependent decrease in pulmonary artery pressure. One group of piglets was exposed to chronic hypoxia for 3 weeks and compared to a control group of piglets. Once a week, the piglets underwent echocardiography to assess PAH severity. At the end of hypoxia exposure, the piglets were subjected to a pulsatile protocol using a pulsatile catheter. After being anesthetized and prepared for surgery, the jugular vein of the piglet was isolated and the catheter was introduced through the right atrium, the right ventricle and the pulmonary artery, under radioscopic control. Pulmonary artery pressure (PAP) was measured before (T0), immediately after (T1) and 30 min after (T2) the pulsatile protocol. It was demonstrated that this pulsatile protocol is a safe and efficient method of inducing a significant reduction in mean PAP via an NO-dependent mechanism. These data open up new avenues for the clinical management of PAH.  相似文献   
6.
《Cell reports》2023,42(1):111914
  1. Download : Download high-res image (169KB)
  2. Download : Download full-size image
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号