首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4371篇
  免费   525篇
  国内免费   114篇
  2024年   21篇
  2023年   173篇
  2022年   226篇
  2021年   346篇
  2020年   310篇
  2019年   442篇
  2018年   290篇
  2017年   190篇
  2016年   180篇
  2015年   259篇
  2014年   291篇
  2013年   400篇
  2012年   239篇
  2011年   210篇
  2010年   143篇
  2009年   124篇
  2008年   142篇
  2007年   130篇
  2006年   124篇
  2005年   139篇
  2004年   83篇
  2003年   81篇
  2002年   88篇
  2001年   41篇
  2000年   38篇
  1999年   29篇
  1998年   30篇
  1997年   35篇
  1996年   18篇
  1995年   19篇
  1994年   25篇
  1993年   26篇
  1992年   19篇
  1991年   15篇
  1990年   10篇
  1989年   9篇
  1988年   16篇
  1987年   8篇
  1986年   9篇
  1985年   9篇
  1984年   9篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1979年   5篇
  1978年   1篇
  1976年   1篇
排序方式: 共有5010条查询结果,搜索用时 15 毫秒
1.
Comment on: Rokavec M, et al. Mol Cell 2012; 45:777-89.  相似文献   
2.
3.
《Cell》2021,184(26):6281-6298.e23
  1. Download : Download high-res image (193KB)
  2. Download : Download full-size image
  相似文献   
4.
Interleukin (IL)-6, a cytokine featuring redundancy and pleiotropic activity, contributes to host defense against acute environmental stress, while dysregulated persistent IL-6 production has been demonstrated to play a pathological role in various autoimmune and chronic inflammatory diseases. Targeting IL-6 is thus a rational approach to the treatment of these diseases. Indeed, clinical trials of tocilizumab, a humanized anti-IL-6 receptor antibody have verified its efficacy and tolerable safety for patients with rheumatoid arthritis, Castleman''s disease and systemic juvenile idiopathic arthritis, resulting in approval of this innovative biologic for treatment of these diseases. Moreover, a considerable number of case reports and pilot studies of off-label use of tocilizumab point to the beneficial effects of tocilizumab for a variety of other phenotypically different autoimmune and chronic inflammatory diseases. Elucidation of the source of IL-6 and of mechanisms through which IL-6 production is dysregulated can thus be expected to lead to clarification of the pathogenesis of various diseases.  相似文献   
5.
《Developmental cell》2020,52(6):714-730.e5
  1. Download : Download high-res image (188KB)
  2. Download : Download full-size image
  相似文献   
6.
《Developmental cell》2022,57(18):2221-2236.e5
  1. Download : Download high-res image (185KB)
  2. Download : Download full-size image
  相似文献   
7.
Patients with idiopathic pulmonary fibrosis (IPF) have a high risk of developing lung cancer compared with the general population. The morbidity of lung cancer in IPF patient ranges from 3% to 22%, and in some cases exceeds 50%, and these patients have a reduced survival time. However, the mechanisms through which IPF increases the morbidity and mortality in lung cancer remain unclear.By carefully analyzing the pathological features of these two diseases, we uncovered that, first, similar to IPF, lung carcinomas are more frequently found in the peripheral area of the lungs and, second, lung cancers tend to develop from the honeycomb areas in IPF. In accordance with the above pathological features, due to the spatial location, the peripheral areas of the lung experience a high stretch force because the average distance between adjacent alveolar cells in this area tends to be larger than that at the central lung when inflated; furthermore, the honeycomb areas, comprised of condensed fibrous tissue, are characterized by increased stiffness. Both of these pathological features of lung cancer and IPF are coincidentally related to abnormal mechanical forces (stretch and tissue stiffness). Therefore, we believe that the aberrant mechanical forces that are generated in the lung with IPF may contribute to the onset and progression of lung cancer.In this review, we discuss the possible effects of mechanical forces that are generated in IPF on the initiation and progression of lung cancer from the perspective of the hallmarks of cancer, including proliferation, metastasis, angiogenesis, cancer stem cells, immunology, epigenetics, and metabolism, so as to advance our understanding of the pathogenesis of IPF-related lung cancer and to harness these concepts for lung cancer mechanotherapies.  相似文献   
8.
The aim of the study was to explore the mechanism of mesenchymal stem cell‐derived exosomes (MSC‐EXO) to protect against experimentally induced pulmonary hypertension (PH). Monocrotaline (MCT)‐induced rat model of PH was successfully established by a single intraperitoneal injection of 50 mg/kg MCT, 3 weeks later the animals were treated with MSC‐EXO via tail vein injection. Post‐operation, our results showed that MSC‐EXO could significantly reduce right ventricular systolic pressure (RVSP) and the right ventricular hypertrophy index, attenuate pulmonary vascular remodelling and lung fibrosis in vivo. In vitro experiment, the hypoxia models of pulmonary artery endothelial cell (PAEC) and pulmonary vascular smooth muscle cell (PASMC) were used. We found that the expression levels of Wnt5a, Wnt11, BMPR2, BMP4 and BMP9 were increased, but β‐catenin, cyclin D1 and TGF‐β1 were decreased in MSC‐EXO group as compared with MCT or hypoxia group in vivo or vitro. However, these increased could be blocked when cells were transfected with Wnt5a siRNA in vitro. Taken together, these results suggested that the mechanism of MSC‐EXO to prevent PH vascular remodelling may be via regulation of Wnt5a/BMP signalling pathway.  相似文献   
9.
10.
Atherogenesis is potentiated by metabolic abnormalities that contribute to a heightened state of systemic inflammation resulting in endothelial dysfunction. However, early functional changes in endothelium that signify an individual''s level of risk are not directly assessed clinically to help guide therapeutic strategy. Moreover, the regulation of inflammation by local hemodynamics contributes to the non-random spatial distribution of atherosclerosis, but the mechanisms are difficult to delineate in vivo. We describe a lab-on-a-chip based approach to quantitatively assay metabolic perturbation of inflammatory events in human endothelial cells (EC) and monocytes under precise flow conditions. Standard methods of soft lithography are used to microfabricate vascular mimetic microfluidic chambers (VMMC), which are bound directly to cultured EC monolayers.1 These devices have the advantage of using small volumes of reagents while providing a platform for directly imaging the inflammatory events at the membrane of EC exposed to a well-defined shear field. We have successfully applied these devices to investigate cytokine-,2 lipid-3, 4 and RAGE-induced5 inflammation in human aortic EC (HAEC). Here we document the use of the VMMC to assay monocytic cell (THP-1) rolling and arrest on HAEC monolayers that are conditioned under differential shear characteristics and activated by the inflammatory cytokine TNF-α. Studies such as these are providing mechanistic insight into atherosusceptibility under metabolic risk factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号