首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
  2023年   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1997年   1篇
  1996年   2篇
  1991年   1篇
  1984年   2篇
  1978年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Plasma membrane flavins and pterins are considered to mediate important physiological functions such as blue light photoperception and redox activity. Therefore, the presence of flavins and pterins in the plasma membrane of higher plants was studied together with NAD(P)H-dependent redox activities. Plasma membranes were isolated from the apical hooks of etiolated bean seedlings (Phaseolus vulgaris L. cv. Limburgse Vroege) by aqueous two-phase partitioning. Fluorescence spectroscopy revealed the presence of two chromophores. The first showed excitation maxima at 370 and 460 nm and an emission peak at 520 nm and was identified as a flavin. The second chromophore was probably a pterin molecule with excitation peaks at 290 and 350 nm and emission at 440 nm. Both pigments are considered intrinsic to the plasma membrane since they could not be removed by treatment with hypotonic media containing high salt and low detergent concentrations. The flavin concentration was estimated at about 500 pmol mg?1 protein. However difficulties were encountered in quantifying the pterin concentrations. Protease treatments indicated that the flavins were non-covalently bound to the proteins. Separation of the plasma membrane proteins after solubilisation by octylglucoside, on an ion exchange system (HPLC, Mono Q), resulted in a distinct protein fraction showing flavin and pterin fluorescence and NADH oxidoreductase activity. The flavin of this fraction was identified as flavin mononucleotide (FMN) by HPLC analysis. Other minor peaks of NADH:acceptor reductase activity were resolved on the column. The presence of distinct NAD(P)H oxidases at the plasma membrane was supported by nucleotide specificity and latency studies using intact vesicles. Our work demonstrates the presence of plasma membrane flavins as intrinsic chromophores, that may function in NAD(P)H-oxidoreductase activity and suggests the presence of plasma membrane bound pterins.  相似文献   
2.
Robert H. White 《Chirality》1996,8(4):332-340
The configuration at the C-9 of methanopterin (MPT) has been determined by comparing the circular dichroism (CD) spectra of MPT and its hydrolytic fragment, 1-[4-[[1-(2-amino-7-methyl-4-hydroxy-6-pteridinyl)-ethyl]amino]phenyl]-1-deoxy-D -ribitol (HP-1), with the CD spectra of a series of model compounds of known stereochemistry. These compounds included (S)-6-[1-(4-carboxymethylanilino)ethyl]pterin, (S-6(1-hydroxyethyl)-7-methylpterin, (S-6-(1-hydroxyethyl)pterin, (R)-6-(1-phenoxyethyl)pterin, D (+)-neopterin, and L -biopterin. From this comparison it was concluded that MPT has the R configuration at C-9 and is thus configurationally related to D (+)-neopterin, which has the S configuration at C-1. From previous work establishing the relative stereochemistry at C-6, C-7, and C-9 of N5-N10-methenyl-5,6,7,8-tetrahydromethanopterin (N5-N10-methenyl-H4MPT) as R, S, and R, respectively, it is clear that the remaining asymmetric carbons at C-6 and C-7 of H4MPT have the S and S configuration, respectively. Comparison of these latter two positions to the equivalent carbons in 5,6,7,8-tetrahydrofolate (H4folate) show that the steps involved in the biological reduction of MPT to H4MPT occur with the same stereochemical outcome as those involved in the biological reduction of folate to H4folate. © 1996 Wiley-Liss, Inc.  相似文献   
3.
The kinetics of formation and transformation of oxygen complexes of two heme-thiolate proteins (the F393H mutant of cytochrome P450 BM3 and the oxygenase domain of endothelial nitric oxide synthase, eNOS) were studied under high pressure. For BM3, oxygen-binding characteristics (rate and activation volume) matched those measured for CO-binding. In contrast, pressure revealed a different CO- and oxygen-binding mechanism for eNOS, suggesting that it is hazardous to take CO-binding as a model for oxygen-binding. With eNOS, a ferric NO complex is formed as an intermediate in the second reaction cycle. Here we report the pressure stability of this compound. Furthermore, in the presence of 4-amino-tetrahydrobiopterin (ABH(4)), an analog to the natural second electron donor tetrahydrobiopterin (BH(4)), biphasic pressure profiles of the oxygen-binding rates were observed, both in the first and the second reaction cycles, indicative of the formation of an additional reaction intermediate. This was confirmed by experiments where ABH(4) was replaced by ABH(2), a cofactor which cannot deliver an electron. Altogether, high pressure appears to be a useful tool to characterize elementary steps in the reaction cycle of heme-thiolate proteins.  相似文献   
4.
Early attempts to identify the chromophore of the photoreceptor for phototropism are reviewed. Carotenoids and flavins were the principal candidates, but studies with grass coleoptiles devoid of carotenoids suggest that at least in these organs carotenoids are most unlikely to play that role. The status of characterization of a gene for a putative photoreceptor protein is also reviewed. As the action spectrum for phototropism resembles the absorption spectrum of a flavoprotein, flavoproteins are attractive candidates at present, especially since the CRY1 photoreceptor in Arabidopsis thaliana that mediates blue light-dependent hypocotyl growth suppression has flavin adenine dinucleotide as one of its two chromophores. As the second chromophore appears to be pterin, pterins should not be ruled out as candidate chromophores for the photoreceptor for phototropism.  相似文献   
5.
Eighteen different aerobic bacteria were isolated which utilized quinoline as sole source of carbon, nitrogen, and energy. Attempts were unsuccessful at isolating anaerobic quinoline-degrading bacteria. The optimal concentration of quinoline for growth was in the range of 2.5 to 5 mM. Some organisms excreted 2-hydroxyquinoline as the first intermediate. Hydroxylation of quinoline was catalyzed by a dehydrogenase which was induced in the presence of quinoline or 2-hydroxyquinoline. Quinoline dehydrogenase activity was dependent on the availability of molybdate in the growth medium. Growth on quinoline was inhibited by tungstate, an antagonist of molybdate. Partially purified quinoline dehydrogenase from Pseudomonas putida Chin IK indicated the presence of flavin, iron-sulfur centers, and molybdenum-binding pterin. M r of quinoline dehydrogenase was about 300 kDa in all isolates investigated.Abbreviations APS ammonium peroxodisulfate - DCPIP 2,6-dichlorophenol-indophenol - EEO electroendosmosis - MTT thiazolyl blue - PES phenazine ethosulfate - TEMED N,N,N,N-tetramethyl-ethylenediamine  相似文献   
6.
It has been generally assumed that a tetrahydropterin (2-amino-5,6,7,8-tetrahydro-4-pteridinone) is essential for activity of the three aromatic amino acid hydroxylases. In this report it is shown that appropriately substituted pyrimidines can assume the role of cofactor for phenylalanine hydroxylase. 2,5,6-Triamino-4-pyrimidinone(V) and 5-benzylamino-2,6-diamino-4-pyrimidinone(VI) possess the same Km values (0.1 mM and 0.003 mM) and stoichiometry of tyrosine generated to cofactor consumed (0.4 and 1.0) as their corresponding pteridine analogs, tetrahydropterin(III) and 6-phenyltetrahydropterin(IV). However, the rates with pyrimidines are lower. The ratio of rates VIII = 0.045 and VIIV = 0.015. These results indicate that pteridine carbons 6 and 7 are not fundamental to cofactor binding or function, though they markedly influence the maximum velocity of hydroxylation. Pyrimidine cofactors of phenylalanine hydroxylase are valuable probes for the elucidation of the binding forces, transition states, and mechanism of oxygen activation of these hydroxylases.  相似文献   
7.
8.
House flies, Musca domestica L., were collected in copula over two summers from six dairies located in three climatically distinct regions in the U.S.A. southern California, Minnesota and Georgia. Ages of males and females from a total of 511 mating pairs were estimated using pterin analysis. Cuticular hydrocarbon profiles and gonotrophic ages of females also were evaluated. Mean age of mating males ranged from 54 to 102 degree‐days (DD) (4–10 days based on field air temperatures), depending on the farm. Very young males (< 10–20 DD) and old males (> 200 DD) were rare in mating pairs. Mean female age at mating ranged from 20 to 46 DD (2.5–4 days). All mating females had eggs in the early stages of vitellogenesis and 99.2% were nulliparous. However, some older and parous females were collected, demonstrating that re‐mating can occur in the field. Head width measurements of mating pairs suggested that assortative mating by size did not occur. The cuticular hydrocarbon profiles of females were determined, with emphasis on (Z)‐9‐tricosene (muscalure). Overall, only 55% of mating females had detectable amounts (> 4 ηg per fly) of (Z)‐9‐tricosene. Of the females that had detectable (Z)‐9‐tricosene, variation in amount per female was high in all fly populations, and thus was not statistically related to the size or age of the mating female. The proportion of mating females with detectable levels of (Z)‐9‐tricosene varied by geographic region. Seventy‐one, 63, and 27% of females from southern California, Minnesota and Georgia had detectable amounts of (Z)‐9‐tricosene. Principal components analysis of the eight most abundant hydrocarbons from mating females, by state, revealed state‐level distinctiveness of hydrocarbons in house fly populations, which may reflect genetic variation associated with environmental stresses in those geographical zones.  相似文献   
9.
The train millipede (Parafontaria laminata armigera) emits a blue fluorescence (λmax=455 nm) under black light (350 nm). The isolated fluorescent compound from the cuticle of P. laminata armigera was identified as pterin-6-carboxylic acid. The structure of this compound was identified by fluorescent, HPLC, and mass spectrometric (ESI-ion trap MS) analyses, and then compared with an authentic sample.  相似文献   
10.
The biological importance of tungsten has been fully proved in the last decade due to isolation of a number of tungsten-containing enzymes (W-enzymes) from hyperthermophilic archaea. Tungsten was previously considered only as an antagonist of molybdenum, because the replacement of molybdenum by tungsten (due to their chemical similarity) leads to inactivation of molybdenum containing enzymes (Mo-enzymes). In addition to the true W-enzymes in which tungsten cannot be replaced by molybdenum, recently some enzymes have been isolated which can use either molybdenum or tungsten in the catalytic process. This review briefly summarizes data on the participation of tungsten in catalysis by some enzymes and the structure of the active sites of W-enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号