首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   0篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2013年   4篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   6篇
  2007年   7篇
  2006年   6篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   8篇
  2001年   9篇
  2000年   2篇
  1999年   6篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   5篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有133条查询结果,搜索用时 156 毫秒
1.
Summary The enzyme protochlorophyllide (pchlide) reductase has been identified amongst the peptides, resolved by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), of chloroplast membranes from oat and barley plants. In support of this identification the enzymic activity associated with the enzyme has also been measured in the same preparations. A higher level of enzyme was found in plants which had been darkened prior to extraction. Based on this data, mechanisms for the light regulated diurnal variation of the reductase are discussed.  相似文献   
2.
3.
Low-temperature fluorescence emission spectra of 6.5-day-old dark-grown epicotyls of pea ( Pisum sativum ) revealed the presence of protochlorophyll(ide). The upper part of the epicotyl contained 30% of the protochlorophyll(ide) content per fresh weight found in pea leaves, whereas the lower part contained 3%. Three discrete spectral forms of protochlorophyll(ide) were clearly distinguished after Gaussian deconvolution of fluorescence excitation and emission spectra. Adding the satellite bands of the Qy(0-0) transitions (the emission vibrational (Emv) bands with correlated amplitudes, gave the following delineation: Ex439–Em629–Emv684, Ex447–Em636–Emv700 and Ex456–Em650–Emv728. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) followed by immunodetection of whole tissue extracts of the epicotyl indicated the presence of NADPH-protochlorophyllide oxidoreductase (EC 1.3.1.33). Electron micrographs showed prolamellar bodies in at most 11 % of the plastid profiles of the epicotyl cells. These prolamellar bodies were smaller, and many of them showed less regular structure than those of the leaves. Taken together, the results indicate that the protochlorophyll(ide) in epicotyls is arranged in a different way than in leaves.  相似文献   
4.
By methods of difference and derivative spectroscopy it was shown that in etiolated leaves at 77 K three photoreactions of P650 protochlorophyllide take place which differ in their rates and positions of spectral maxima of the intermediates formed in the process: P650R668, P650R688, and P650R697. With an increase of temperature up to 233 K, in the dark, R688 and R697 are transformed into the known chlorophyllide forms C695/684 and C684/676, while R668 disappears with formation of a shorter wavelength form of protochlorophyllide with an absorption maximum at 643–644 nm.Along with these reactions, at 77 K phototransformations of the long-wave protochlorophyllide forms with absorption maxima at 658–711 nm into the main short-wave forms of protochlorophyllide are observed. At 233 K in the dark this reaction is partially reversible. This process may be interpreted as a reversible photodisaggregation of the pigment in vivo.The mechanism of P650 reactions and their role in the process of chlorophyll photobiosynthesis are discussed.Abbreviations P650 protochlorophyll(ide) with absorption maximum at 650 nm - C697/684 chlorophyllide with fluorescence maximum at 695 nm and absorption maximum at 684 nm - R697 intermediate with absorption maximum at 697 nm  相似文献   
5.
In Lemna pausicostata Hegelm. 6746, light is required for sufficient acifluorfenmethyl (AFM) stimulation of protoporphyrin IX (Proto IX) accumulation to cause significant herbicidal action. In darkness, AFM causes Proto IX levels to increase for about 2 h, after which Proto IX content is stable at levels significantly lower than those accumulated in light. In darkness, sucrose cannot increase levels of AFM-induced Proto IX. However, addition of δ-aminolevulinic acid (ALA) increases Proto IX levels in AFM-treated plants in darkness, demonstrating that the herbicide blocks the porphyrin pathway in darkness as it does in the light. Thus, Proto IX accumulation in darkness appears to be limited by ALA availability. This is supported by the finding that dioxoheptanoic acid caused more ALA to accumulate in light than in darkness. Heme is a feedback inhibitor of ALA synthesis, and heme synthesis is inhibited by AFM. However, total extractable heme levels were reduced by AFM by about the same amount in both light and darkness. Exogenously supplied hemin reduced AFM-caused Proto IX accumulation and herbicidal damage in the light and also reduced Proto IX accumulation caused by AFM or AFM plus ALA in darkness. AFM-stimulated Proto IX accumulation was inversely proportional to the log of the photon flux density between 5 and 500 μmol in m−2 s−1. Reduced effects of higher photon fluxes on AFM-stimulated Proto IX accumulation are probably due to both increased photobleaching of Proto IX and reduced porphyrin synthesis because of herbicidal damage. AFM-stimulated Proto IX accumulation in darkness could not be demonstrated to be under phytochrome control, but it appeared to be under the negative influence of protochlorophyllide levels.  相似文献   
6.
NADPH-protochlorophyllide oxidoreductase (PChilde reductase, EC 1.3.1.33), a key enzyme in light-dependent greening and the conversion of etioplasts into chloroplasts was investigated in the the greening mutant C-2A' of the unicellular green alga Scenedesmus obliquus. In the absence of detergent, the solubilization of the enzyme increased with high glycerol concentrations in the buffer. Solubilization capacities of 4 non-ionic or zwitterionic detergents, Triton X-100, CHAPS, octylglucoside and decyl-maltopyranoside, were compared. Due to the addition of these detergents, the enzyme activity in the soluble fraction was increased severalfold. Hydrophobicity of the enzyme was analyzed by Triton X-114 phase partitioning. The protein had a preference for the aqueous phase, but its distribution was strongly influenced by the glycerol concentration of the buffer. These results indicate that the PChlide reductase of the green alga Scenedesmus obliquus is a hydrophobic, membrane-associated enzyme, but not an integral membrane protein.  相似文献   
7.
Etioplast development and protochlorophyllide (Pchlide) accumulation was studied in wheat seedlings ( Triticum aestivum L. cv. Walde, Weibull) grown in darkness on gibberellic acid (GA3), gabaculine (3-amino-2,3-dihydrobenzoic acid), or on a combination of the two. The results were compared with the features of seedlings grown on water only. GA3 enhanced shoot growth and promoted etioplast development. A correlation was observed between the appearance of prolamellar bodies (PLBs) and of phototransformable Pchlide. Gabaculine, a known tetrapyrrole biosynthesis inhibitor, delayed growth, slowed down the rate of PLB formation and caused structural alterations of the etioplasts up to 48 h of germination. Gabaculine also delayed the formation of phototransformable Pchlide as well as overall Pchlide biosynthesis, as determined by low-temperature fluorescence emission in vivo. The spectral blue-shift of newly formed chlorophyllide (Chlide) was delayed in irradiated dark-grown gabaculine-grown seedlings, indicating an inhibited dissociation of Chlide and NADPH-Pchlide oxidoreductase (Pchlide reductase: EC 1.3.1.33). Thus there is a close correlation between accumulation of Pchlide and etioplast development, also under conditions when development is enhanced or delayed.  相似文献   
8.
The appearance of the light harvesting II (LHC II) protein in etiolated bean leaves, as monitored by immunodetection in LDS-solubilized leaf protein extracts, is under phytochrome control. A single red light pulse induces accumulation of the protein, in leaves kept in the dark thereafter, which follows circadian oscillations similar to those earlier found for Lhcb mRNA (Tavladoraki et al. (1989) Plant Physiol 90: 665–672). These oscillations are closely followed by oscillations in the capacity of the leaf to form Chlorophyll (Chl) in the light, suggesting that the synthesis of the LHC II protein and its chromophore are in close coordination. Experiments with levulinic acid showed that PChl(ide) resynthesis does not affect the LHC II level nor its oscillations, but new Chl a synthesis affects LHC II stabilization in thylakoids, implicating a proteolytic mechanism. A proteolytic activity against exogenously added LHC II was detected in thylakoids of etiolated bean leaves, which was enhanced by the light pulse. The activity, also under phytochrome control, was found to follow circadian oscillations in verse to those in the stabilization of LHC II protein in thylakoids. Such a proteolytic mechanism therefore, may account for the circadian changes observed in LHC II protein level, being implicated in pigment-protein complex assembly/stabilization during thylakoid biogenesis.Abbreviations Chl chlorophyll - CL continuous light - D dark - FR far-red light - LA levulinic acid - LHC II light-harvesting complex serving Photosystem II - PChl(ide) protochlorophyllide - PCR protochlorophyllide oxidoreductase - R red light  相似文献   
9.
A new approach to the design of conceptually and phenomenologically new herbicides is described. It involves the joint utilization of tetrapyrrole precursors, such as δ-aminolaevulinic acid (a biodegradable amino acid) and activators of the chlorophyll biosynthetic pathway, such as 2,2′-dipyridyl, in order to induce treated plants to biosynthesize and accumulate massive amounts of tetrapyrrole intermediates of the chlorophyll biosynthetic pathway in the dark (i.e. at night). During the subsequent light period (daylight) the accumulated tetrapyrroles act as potent photodynamic sensitiziers, which in turn result in the death of susceptible plants in a matter of hours. We have therefore proposed to name herbicides that act via this mechanism as photodynamic herbicides, or more pictorially as laser herbicides. From a limited survey of agricultural plant and weed species it appears that photodynamic herbicides exhibit a very pronounced organ, age and species-dependent selectivity. For example, dicotyledonous weeds such as mustard, red-root pigweed, common purslane and lambsquarter are very susceptible while monocotyledonous plants such as corn, wheat, barley and oats are not. The biochemical basis of this selectivity seems to lie, among other things, in the rates of tetrapyrrole turnover and in a differential enhancement by the applied chemicals of the monovinyl and divinyl tetrapyrrole biosynthetic pathways in the various species. A survey of various groups of chemicals (herbicides and other selected biochemicals) that are likely to exhibit photodynamic herbicidal properties is currently under investigation.  相似文献   
10.
Prolamellar bodies and prothylakoids from etioplasts of wheat ( Triticum aestivum L. cv. Starke II, Weibull) were separated by sucrose density gradient centrifugation. Top-loaded and bottom-loaded sucrose gradients were compared. As a consequence of avoiding long time exposure of the membranes to low sucrose concentrations, separation in bottom-loaded gradients, as compared to separation in top-loaded gradients, resulted in a sharper and more narrow band of prothylakoids, and in better preservation of phototransformable protochlorophyllide, especially in the prothylakoids. In bottom-loaded gradients, the prothylakoids were found concentrated in a band at a density of 1.20 g'ml−1. The prolamellar bodies were found at a density of 1.17 g'ml−1. In top-loaded gradients the prothylakoids were found at a lower density than the prolamellar bodies. The prothylakoid fraction contained about 60% of the recovered protochlorophyllide and about 85% of the recovered protein. Absorption and fluorescence emission spectra revealed a higher amount of phototransformable protochlorophyllide, in relation to non-phototransformable, in the prolamellar body fraction than in the prothylakoid fraction. Polyacrylamide gel electrophoresis indicated a high proportion of protochlorophyllide reductase in the prolamellar bodies. Chloroplast ATPase (CF1) was found predominantly in the prothylakoid fraction. Thus, our results strongly indicate the presence of phototransformable protochlorophyllide in the prolamellar bodies proper, while the main bulk of proteins are located in the prothylakoids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号