首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   3篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2019年   5篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  1991年   3篇
  1975年   1篇
排序方式: 共有44条查询结果,搜索用时 734 毫秒
1.
摘要 目的:探讨针刺三里穴、中脘对大鼠胃大部切除术后胃肠传输功能恢复的影响及可能的作用机制。方法:将60只 SD 大鼠随机分为空白组、模型组和针刺组,每组 20 只。造模成功后第3天开始,针刺组进行针刺足三里、中脘,连续治疗14天。于末次针刺结束后,各组记录进食量、体重等;后各组禁食24 h后进行胃残留率和小肠推进率测定,腹主动脉取血测定胃泌素、胃动素、食欲素A及食欲素1型受体。结果:造模前,三组大鼠体重和进食量差异无统计学意义,P>0.05。造模后3天,模型组及针刺组体重和进食量低于空白组,差异有统计学意义,P<0.05。针刺干预后,模型组体重和进食量低于空白组和针刺组,差异有统计学意义,P<0.05。针刺干预后,针刺组大鼠胃残留率、小肠推进率、胃泌素、胃动素、食欲素A及食欲素1型受体高于模型组,差异有统计学意义,P<0.05;模型组胃残留率、小肠推进率、胃泌素、胃动素、食欲素A及食欲素1型受体低于空白组,差异有统计学意义,P<0.05;针刺组与空白组胃残留率、小肠推进率、胃泌素、胃动素、食欲素A及食欲素1型受体差异无统计学意义,P>0.05。结论:针刺胃大部切除术后大鼠足三里穴、中脘穴,改善胃排空和小肠推进功能,促进术后胃肠功能的恢复,其作用机制可能为改变脑肠肽代谢,增加食欲素A水平,激活食欲素1型受体,促进胃泌素、胃动素分泌。  相似文献   
2.
Approximately ninety percent of the wheelchair users worldwide prefer the conventional push rim mode of propulsion for daily mobility and rehabilitation. Even though push-rim wheelchairs help to promote a healthy life style, the high muscular demand and the non-continuous push motions can lead to serious upper extremity injuries. In this study, muscle EMG data of ten healthy subjects were recorded for a newly introduced handle based propulsion mechanism (HBP) and compared to conventional push-rim propulsion at two workloads, 25 W and 35 W respectively. The results for the mean peak muscle activations at both workloads demonstrate that push-rim propulsion leads to higher peak muscle activity compared to HBP at a similar wheelchair forward velocity of 1.11 m/s. The generation of these high peak muscle activations with increasing loads in push-rim propulsion over time can lead to overuse injuries. Overall, the use of the HBP mechanism is less straining to the muscles and may reduce fatigue during prolonged propulsion.  相似文献   
3.
<正> The use of oscillating flexible fins in propulsion has been the subject of several studies in recent years, but attention israrely paid to the specific role of stiffness profile in thrust production.Stiffness profile is defined as the variation in localchordwise bending stiffness (EI) of a fin, from leading to trailing edge.In this study, flexible fins with a standard NACA0012shape were tested alongside fins with a stiffness profile mimicking that of a Pumpkinseed Sunfish (Lepomis gibbosus).The finswere oscillated with a pitching sinusoidal motion over a range of frequencies and amplitudes, while torque, lateral force andstatic thrust were measured.Over the range of oscillation parameters tested, it was shown that the fin with a biomimetic stiffness profile offered a significantimprovement in static thrust, compared to a fin of similar dimensions with a standard NACA0012 aerofoil profile.Thebiomimetic fin also produced thrust more consistently over each oscillation cycle.A comparison of fin materials of different stiffness showed that the improvement was due to the stiffness profile itself, andwas not simply an effect of altering the overall stiffness of the fin.Fins of the same stiffness profile were observed to follow thesame thrust-power curve, independent of the stiffness of the moulding material.Biomimetic fins were shown to produce up to26% greater thrust per watt of input power, within the experimental range.  相似文献   
4.
Ciliates can form an important link between the microbial loop and higher trophic levels primarily through consumption by copepods. This high predation pressure has resulted in a number of ciliate species developing rapid escape swimming behaviour. Several species of these escaping ciliates also possess a long contractile tail for which the functionality remains unresolved. We use high-speed video, specialized optics and novel fluid visualization tools to evaluate the role of this contractile appendage in two free-swimming ciliates, Pseudotontonia sp. and Tontonia sp., and compare the performance to escape swimming behaviour of a non-tailed species, Strobilidium sp. Here, we show that ‘tailed’ species respond to hydrodynamic disturbances with extremely short response latencies (less than or equal to 0.89 ms) by rapidly contracting the tail which carries the cell body 2–4 cell diameters within a few milliseconds. This provides an advantage over non-tailed species during the critical first 10–30 ms of an escape. Two small, short-lived vortex rings are created during contraction of the tail. The flow imposed by the ciliate jumping can be described as two well-separated impulsive Stokeslets and the overall flow attenuates spatially as r−3. The high initial velocities and spatio-temporal arrangement of vortices created by tail contractions appear to provide a means for rapid escape as well as hydrodynamic ‘camouflage’ against fast striking, mechanoreceptive predators such as copepods.  相似文献   
5.
The ability to directly measure velocity fields in a fluid environment is necessary to provide empirical data for studies in fields as diverse as oceanography, ecology, biology, and fluid mechanics. Field measurements introduce practical challenges such as environmental conditions, animal availability, and the need for field-compatible measurement techniques. To avoid these challenges, scientists typically use controlled laboratory environments to study animal-fluid interactions. However, it is reasonable to question whether one can extrapolate natural behavior (i.e., that which occurs in the field) from laboratory measurements. Therefore, in situ quantitative flow measurements are needed to accurately describe animal swimming in their natural environment. We designed a self-contained, portable device that operates independent of any connection to the surface, and can provide quantitative measurements of the flow field surrounding an animal. This apparatus, a self-contained underwater velocimetry apparatus (SCUVA), can be operated by a single scuba diver in depths up to 40 m. Due to the added complexity inherent of field conditions, additional considerations and preparation are required when compared to laboratory measurements. These considerations include, but are not limited to, operator motion, predicting position of swimming targets, available natural suspended particulate, and orientation of SCUVA relative to the flow of interest. The following protocol is intended to address these common field challenges and to maximize measurement success.  相似文献   
6.
Concern over passage of sturgeon barriers, has focused attention on fishway design that accommodates its swimming performance. In order to evaluate swimming performance, regarding fish ladder type partial barriers, wild adult sturgeons, Acipenser transmontanus; 121–76m fork length, were captured in the San Francisco Bay Estuary and Yolo Bypass toe drain. Hydrodynamic forces and kinematic parameters for swimming performance data were collected in a laboratory flume under three flow conditions through barriers and ramp. The experiments were conducted in a 24.4 m long, 2.1 m wide, and 1.62 m deep aluminum channel. Two geometric configurations of the laboratory model were designed based on channel characteristics that have been identified in natural river systems. At a given swimming speed and fish size, the highest guidance efficiencies of successful white sturgeon passage as a function of flow depth, flow velocity, turbulence intensity, Reynolds number, Froude number and shear velocity observed in the steady flow condition, tested with the horizontal ramp structure, occurred at an approach velocity of 0.33 ms-1. The guidance efficiency of successful sturgeon passage increased both with increasing flow velocity and Froude number, and decreased both with the flow depth and the turbulence intensity. This study also provides evidence that tail beat frequency increases significantly with swimming speed, but tail beat frequency decreases with fish total length. Stride length increases both with swimming speed and fish total length. The importance of unsteady forces is expressed by the reduced frequency both with swimming speed and fish total length. Regression analysis indicates that swimming kinematic variables are explained by the swimming speed, the reduced frequency and the fish total length. The results emphasize the importance of fish ladder type patchiness when a fishway is designed for the passage of sturgeon.  相似文献   
7.
A robotic fish driven by oscillating fins, "Cownose Ray-I", is developed, which is in dorsoventrally flattened shape withouta tail. The robotic fish is composed of a body and two lateral fins. A three-factor kinematic model is established and used in thedesign of a mechanism. By controlling the three kinematic parameters, the robotic fish can accelerate and maneuver. Forwardvelocity is dependent on the largest amplitude and the number of waves in the fins, while the relative contribution of fin beatfrequency to the forward velocity of the robotic fish is different from the usual result. On the other hand, experimental results onmaneuvering show that phase difference has a stronger effect on swerving than the largest amplitude to some extent. In addition,as propulsion waves pass from the trailing edge to the leading edge, the robotic fish attains a backward velocity of 0. 15 m·s-1.  相似文献   
8.
There are many kinds of swimming mode in the fish world, and we investigated two of them, used by cyprinids and bulltrout. In this paper we track the locomotion locus by marks in different flow velocity from 0.2 m·s^-1 to 0.8 m·s^-1. By fit the data above we could find out the locomotion mechanism of the two kinds of fish and generate a mathematical model of fish kine- matics. The cyprinid fish has a greater oscillation period and amplitude compared with the bulltrout, and the bulltrout changes velocity mainly by controlling frequency of oscillation.  相似文献   
9.
Matsumoto  G. I. 《Hydrobiologia》1991,(1):319-325
This study focuses on the mechanics of ciliary movement of ctenophores in relation to locomotion and feeding, with field and laboratory observations documented with 35 mm photographs and video sequences. Movement through the water is strongly modified by subtleties of body morphology. Whereas the entire ctenophore moves in a flow regime where the Reynolds numbers range from 100 to 6000, the cilia on the surface of the ctenophores move in a flow regime where the Reynolds numbers range only from 10 to 300. The water flow patterns seen by use of fluorescein dye do not match any current model of ciliary flow and assumptions for a new model are postulated. Ctenophores exhibit a wide variety of morphological adaptations that reduce drag, and a variety of behaviours that exploit fine-scale water movements for prey capture.  相似文献   
10.
目的:研究磁处理冬虫夏草精粉药液对消化功能影响的药效作用。方法:用对比法,比较磁处理冬虫夏草精粉药液与正常台氏液对离体兔小肠平滑肌收缩运动的影响;用碳末法比较生理盐水与磁处理冬虫夏草精粉药液对小鼠肠推进运动的影响。结果:离体兔小肠平滑肌收缩运动:与正常台氏液相比,磁处理冬虫夏草精粉药液(20%、60%)有促进作用(p〈0.01、p〈0.05);小鼠肠碳末推进率:与生理盐水组比较,磁处理冬虫夏草精粉药液未见明显的作用(p〉0.05)。结论:磁处理冬虫夏草精粉药液对离体免小肠平滑肌收缩运动有明显作用,对小鼠肠推进运动功能未见明显的作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号