首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  2024年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   4篇
  2003年   1篇
  2001年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Free-roaming equids (i.e., feral horses [Equus caballus] and burros [Equus asinus]) are widely distributed and locally abundant across the rangelands of the western United States. The 1971 Wild Free Roaming Horse and Burro Act (WFRHBA) gave the Bureau of Land Management (BLM) and United States Forest Service (USFS) the legal authority to manage these animals on designated public lands. To fulfill this responsibility, federal agencies established an Appropriate Management Level (AML), defined as the number of horses or burros that can be sustained on a given management unit under prevailing environmental conditions and land uses. Although the WFRHBA specifies that feral equids must be managed in ecological balance with other land uses, including conservation of native wildlife, population control measures such as gathers, contraception, and adoptions have failed to keep pace with intrinsic growth rates. Over 80% of federally managed herds currently exceed prescribed population levels, making the potential for competition between native ungulates and feral equids a growing concern among state wildlife agencies. Mule deer (Odocoileus hemionus), pronghorn (Antilocapra americana), elk (Cervus canadensis), and bighorn sheep (Ovis canadensis) are of ecological and economic value to the states where they occur, and all exhibit some degree of distributional, habitat, or dietary overlap with horses or burros. Notwithstanding the scale of the problem, to date there have been no range-wide assessments of competition potential among native and feral ungulates for space, forage, or water. To address this need, we compiled demographic, jurisdictional, and species occurrence data collected from 2010–2019 by federal and state agencies. We used these data to map the distributions of 4 native ungulate species across federal equid management units (FEMUS) in 10 western states (n = 174). We then made within-state rankings of the 50 units that were ≥2 times over AML and encompassed ≥3 native ungulates. Collectively, FEMUs covered approximately 225,000 km2, representing 18% of all BLM and USFS lands in affected states. Each FEMU supported ≥1 native ungulate and 14% contained all 4. The degree of overlap between native and feral species varied by state, ranging from <1% for mule deer in Montana, to 40% for bighorn sheep in Nevada. Oregon had the largest proportion of units that supported all 4 native ungulates (58%), whereas Montana and New Mexico had the fewest equids, but all populations were over target densities. Despite the perception that the problem of equid abundance is limited to the Great Basin states, high intrinsic growth rates and social constraints on management practices suggest all affected states should monitor range conditions and native ungulate demography in areas where forage and water resources are limited and expanding equid populations are a concern. © 2021 The Wildlife Society.  相似文献   
2.
Animal movement can mediate the ecological consequences of fragmentation; however, barriers such as fences, roads, and railways are becoming a pervasive threat to wildlife. Pronghorn (Antilocapra americana) habitat in western North America has been fragmented by roads, railways, and fences. Although pronghorn are sensitive to barriers, neither the relative permeability of different barriers to crossing nor their influence on space use have been quantified. We used a large global positioning system (GPS)-collar dataset of pronghorn (n = 1,010 animal-years) in Wyoming, USA, to first quantify the likelihood that pronghorn cross each of 5 different anthropogenic barriers, including fences, county roads, railroads, state highways, and interstate highways (i.e., interstates). Next, we assessed how each barrier influenced pronghorn space use during the winter as indexed by the area occupied, and daily displacement relative to the density of barriers on an individual's winter range. The semi-permeability of the 5 barriers varied substantially, with the interstate being the most severe barrier to pronghorn movement. Pronghorn were >300 times less likely to cross interstates compared to state highways. Although pronghorn space use was rarely influenced by barriers within individual core winter ranges, pronghorn space use was constrained by barriers on the buffered periphery of individual winter ranges. Despite their different permeability to movement, the density of fences and combined interstates and railroads had similarly negative effects on pronghorn space use. Our results illustrate that the degree to which pronghorn avoid crossing barriers may scale up to affect access to habitat. Additionally, our results indicate that the effects of barriers on habitat access are not proportional to their permeability. Our results add to a growing consensus that effective management of mobile species depends on understanding how different kinds of semi-permeable barriers influence access and use of habitats.  相似文献   
3.
Pronghorn (Antilocapra americana), a symbol of western North America, experienced diverging population trajectories since the mid-twentieth century, with northern populations showing signs of recovery while those in the arid Southwest have struggled to persist. We conducted a systematic literature review of papers published through August 2023 to understand 3 questions. What are the habitat conditions needed for pronghorn to persist? What management actions can be taken to foster higher quality habitat? Do these actions differ for populations in the arid Southwest compared to their northern counterparts? Although the fundamental habitat requirements for pronghorn persistence have remained constant since the early 2000s, it has become clear that precipitation is a key factor influencing pronghorn populations in the arid Southwest. The precise mechanisms by which precipitation influences pronghorn population dynamics are not yet clear, whether through the availability of free water, by affecting forage quality, or indirectly via predator-prey dynamics. Although range-wide forage enhancement may be impractical, providing additional free water sources could facilitate greater movement, enabling pronghorn to access more and higher quality forage and areas with lower predation risk. To clarify how pronghorn persisted for thousands of years in this harsh environment, we must gain a better understanding of their historical metapopulation and migratory behaviors in the arid Southwest.  相似文献   
4.
Stable oxygen isotope (δ18O) compositions from vertebrate tooth enamel are widely used as biogeochemical proxies for paleoclimate. However, the utility of enamel oxygen isotope values for environmental reconstruction varies among species. Herein, we evaluate the use of stable oxygen isotope compositions from pronghorn (Antilocapra americana Gray, 1866) enamel for reconstructing paleoclimate seasonality, an elusive but important parameter for understanding past ecosystems. We serially sampled the lower third molars of recent adult pronghorn from Wyoming for δ18O in phosphate (δ18OPO4) and compared patterns to interpolated and measured yearly variation in environmental waters as well as from sagebrush leaves, lakes, and rivers (δ18Ow). As expected, the oxygen isotope compositions of phosphate from pronghorn enamel are enriched in 18O relative to environmental waters. For a more direct comparison, we converted δ18Ow values into expected δ18OPO4* values (δ18OWPO4*). Pronghorn δ18OPO4 values from tooth enamel record nearly the full amplitude of seasonal variation from Wyoming δ18OW‐PO4* values. Furthermore, pronghorn enamel δ18OPO4 values are more similar to modeled δ18OW‐PO4* values from plant leaf waters than meteoric waters, suggesting that they obtain much of their water from evaporated plant waters. Collectively, our findings establish that seasonality in source water is reliably reflected in pronghorn enamel, providing the basis for exploring changes in the amplitude of seasonality of ancient climates. As a preliminary test, we sampled historical pronghorn specimens (1720 ± 100 AD), which show a mean decrease (a shift to lower values) of 1–2‰ in δ18OPO4 compared to the modern specimens. They also exhibit an increase in the δ18O amplitude, representing an increase in seasonality. We suggest that the cooler mean annual and summer temperatures typical of the 18th century, as well as enhanced periods of drought, drove differences among the modern and historical pronghorn, further establishing pronghorn enamel as excellent sources of paleoclimate proxy data.  相似文献   
5.
6.
We developed a set of eight polymorphic microsatellite loci for pronghorn, Antilocapra americana. We screened 233 individuals from the National Bison Range in Moiese, MT, and found allele numbers from three to 11 and heterozygosity levels ranging from 0.142 to 0.807. These results suggest that these loci will be useful in paternity analysis and basic population genetics applications.  相似文献   
7.
The importance of conserving migratory populations is recognized across a variety of ungulate taxa, yet the demographic benefits of migration remain uncertain for ungulate populations that exhibit partial migration. We hypothesized that migratory pronghorn (Antilocapra americana) would experience greater survival compared to residents by moving longer distances to avoid severe winter weather and access higher quality forage. We used a Bayesian time-to-event approach to analyze the fates of 175 radio-collared adult female pronghorn monitored over 8 biological years (2004–2011) in the Northern Sagebrush Steppe ecosystem. Annual survivorship of migratory pronghorn was 7% higher on average compared to residents but not statistically different. Migratory pronghorn had higher survivorship in summer and winter compared to residents, and few mortalities were observed during the short autumn and spring migration periods. Mortality risk for both movement tactics intensified under more severe winter weather; winter weather severity alone best explained annual pronghorn mortality risk. The top model predicted survival rates to decline on average by 56% over the range of observed winter climatic conditions. To minimize human impacts to pronghorn during extreme climatic events, we recommend working with transportation departments and land managers to enhance pronghorn crossings of roads and railroads, and landholders to modify fences to wildlife-friendly standards. © 2020 The Authors. Journal of Wildlife Management published by Wiley Periodicals, LLC on behalf of The Wildlife Society.  相似文献   
8.
Abstract: We studied the effects of coyote (Canis latrans) control for livestock protection on native ungulates during 2003 and 2004 on 7 sites in Utah and Colorado, USA, totaling over 1,900 km2. We found no relationships between coyote control variables and offspring/female deer ratios. However, control effort (no. of hr spent aerial gunning for coyotes) and success (no. of coyotes taken) were positively correlated with numbers of mule deer (Odocoileus hemionus) and pronghorn (Antilocapra americana) observed per kilometer of transect. Our results suggest that coyote control for livestock protection may increase densities of mule deer and pronghorn in areas where it is conducted.  相似文献   
9.
ABSTRACT Ungulate mortality from capture-related injuries is a recurring concern for researchers and game managers throughout North America and elsewhere. We evaluated effects of 7 variables to determine whether ungulate mortality could be reduced by modifying capture and handling procedures during helicopter net-gunning. During winter 2001–2006, we captured 208 white-tailed deer (Odocoileus virginianus) and 281 pronghorn (Antilocapra Americana) by helicopter net-gunning throughout the Northern Great Plains. Of 281 pronghorn, 25 (8.9%) died from capture-related injuries; 12 were from direct injuries during capture, and 13 occurred postrelease. Of 208 deer, 3 (1.4%) died from injuries sustained during helicopter captures, with no mortalities documented postrelease. We used logistic regression to evaluate the probability that ungulates would die of injuries associated with helicopter net-gun captures by analyzing effects of snow depth, transport distance, ambient and rectal temperatures, pursuit and handling times, and whether individuals were transported to processing sites. The probability of capture-related mortality postrelease decreased 58% when transport distance was reduced from 14.5 km to 0 km and by 69% when pursuit time decreased from 9 minutes to <1 minute. Wildlife managers and researchers using helicopter capture services in landscapes of the Midwest should limit pursuit time and eliminate animal transport during pronghorn and white-tailed deer capture operations to minimize mortality rates postrelease.  相似文献   
10.
Feral horse (Equus ferus caballus) populations on public rangelands in the western United States threaten forage production for livestock and wildlife habitat. Interference competition between feral horses and heterospecifics at watering sources can have negative effects on livestock and wildlife. Researchers have documented altered timing and behavior of wild ungulates at water sources when horses were present. The few studies examining these interactions have infrequently occurred within areas specifically managed for feral equids and have not occurred in sites with cattle. We used motion-sensitive cameras at 8 watering sources to document watering activity patterns and construct indices of temporal overlap among feral horses, cattle, elk (Cervus canadensis), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra americana) within the Adobe Town Herd Management Area in southern Wyoming, USA, between June and September 2018 and 2019. Feral horses, cattle, and pronghorn exhibited a high degree of temporal overlap (>79%) in water use, with feral horses and pronghorn exhibiting the highest estimated percent overlap (88.1%, 95% CI = 86.5–89.6%). Mule deer and elk watering activity also overlapped with horses and cattle but to a lesser degree (<55%). Feral horses spent a mean of 16.7 ± 30.5 (SD) minutes during a watering event and were present at a given water source on average 4.5 ± 6.3% and up to 34.9% of the day, which is less than reported in previous studies. Cattle spent on average 23.5 ± 44.9 minutes during a watering event, and were present on average 4.2 ± 7.7% and up to 42.4% of the day at a single water source. Results of generalized linear mixed-effects models indicated that number of conspecifics was the strongest predictor of visit duration for pronghorn and horses; hour of the day and group size of heterospecifics were informative, but less important, variables. There was no difference in peak visitation time for any species between sites of high versus low horse or cattle use. Despite temporal overlap, we did not find evidence of interference competition between feral horses, cattle, and pronghorn. We recommend future examination of interference competition and its biological consequences between introduced and native ungulates at water sources of varying size across sites, equid population levels, and livestock stocking rates. © 2020 The Wildlife Society.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号