首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2004年   2篇
  2002年   1篇
排序方式: 共有13条查询结果,搜索用时 390 毫秒
1.
Apoptosis is a major form of cell death, characterized by a series of morphological changes induced by cleaving cytoplasmic and nuclear proteins via active caspases. The data presented here show, by fluorescence microscopic and immunoblotting analyses, that a prodomain of caspase-7 inhibits its nuclear translocation and apoptosis-inducing activity. This nuclear localization is dependent on the presence of a basic tetrapeptide that is conserved in mammalian and Xenopus caspase-7 and that is located downstream of a cleavage site between a prodomain and a catalytic protease domain. Furthermore, an attachment of the caspase-7 prodomain (31 amino acids) represses the nuclear transport of a fusion protein of a heterologous protein and the caspase-7 nuclear localization signal (19 amino acids), suggesting that the inhibition of nuclear localization by the prodomain is mediated by the interaction of these short peptides.  相似文献   
2.
During the progression of prostate cancer, the epithelial adhesion molecule E-cadherin is cleaved from the cell surface by ADAM15 proteolytic processing, generating an extracellular 80 kDa fragment referred to as soluble E-cadherin (sE-cad). Contrary to observations in cancer, the generation of sE-cad appears to correlate with ADAM10 activity in benign prostatic epithelium. The ADAM10-specific inhibitor INCB8765 and the ADAM10 prodomain inhibit the generation of sE-cad, as well as downstream signaling and cell proliferation. Addition of EGF or amphiregulin (AREG) to these untransformed cell lines increases the amount of sE-cad shed into the conditioned media, as well as sE-cad bound to EGFR. EGF-associated shedding appears to be mediated by ADAM10 as shRNA knockdown of ADAM10 results in reduced shedding of sE-cad. To examine the physiologic role of sE-cad on benign prostatic epithelium, we treated BPH-1 and large T immortalized prostate epithelial cells (PrEC) with an sE-cad chimera comprised of the human Fc domain of IgG1, fused to the extracellular domains of E-cadherin (Fc-Ecad). The treatment of untransformed prostate epithelial cells with Fc-Ecad resulted in phosphorylation of EGFR and downstream signaling through ERK and increased cell proliferation. Pre-treating BPH-1 and PrEC cells with cetuximab, a therapeutic monoclonal antibody against EGFR, decreased the ability of Fc-Ecad to induce EGFR phosphorylation, downstream signaling, and proliferation. These data suggest that ADAM10-generated sE-cad may have a role in EGFR signaling independent of traditional EGFR ligands.  相似文献   
3.
The proprotein convertase subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P) is implicated in lipid homeostasis, the unfolded protein response, and lysosome biogenesis. The protease is further hijacked by highly pathogenic emerging viruses for the processing of their envelope glycoproteins. Zymogen activation of SKI-1/S1P requires removal of an N-terminal prodomain, by a multistep process, generating the mature enzyme. Here, we uncover a modular structure of the human SKI-1/S1P prodomain and define its function in folding and activation. We provide evidence that the N-terminal AB fragment of the prodomain represents an autonomous structural and functional unit that is necessary and sufficient for folding and partial activation. In contrast, the C-terminal BC fragment lacks a defined structure but is crucial for autoprocessing and full catalytic activity. Phylogenetic analysis revealed that the sequence of the AB domain is highly conserved, whereas the BC fragment shows considerable variation and seems even absent in some species. Notably, SKI-1/S1P of arthropods, like the fruit fly Drosophila melanogaster, contains a shorter prodomain comprised of full-length AB and truncated BC regions. Swapping the prodomain fragments between fly and human resulted in a fully mature and active SKI-1/S1P chimera. Our study suggests that primordial SKI-1/S1P likely contained a simpler prodomain consisting of the highly conserved AB fragment that represents an independent folding unit. The BC region appears as a later evolutionary acquisition, possibly allowing more subtle fine-tuning of the maturation process.  相似文献   
4.

Background

Arginine-specific (RgpB and RgpA) and lysine-specific (Kgp) gingipains are secretory cysteine proteinases of Porphyromonas gingivalis that act as important virulence factors for the organism. They are translated as zymogens with both N- and C-terminal extensions, which are proteolytically cleaved during secretion. In this report, we describe and characterize inhibition of the gingipains by their N-terminal prodomains to maintain latency during their export through the cellular compartments.

Methods

Recombinant forms of various prodomains (PD) were analyzed for their interaction with mature gingipains. The kinetics of their inhibition of proteolytic activity along with the formation of stable inhibitory complexes with native gingipains was studied by gel filtration, native PAGE and substrate hydrolysis.

Results

PDRgpB and PDRgpA formed tight complexes with arginine-specific gingipains (Ki in the range from 6.2 nM to 0.85 nM). In contrast, PDKgp showed no inhibitory activity. A conserved Arg-102 residue in PDRgpB and PDRgpA was recognized as the P1 residue. Mutation of Arg-102 to Lys reduced inhibitory potency of PDRgpB by one order of magnitude while its substitutions with Ala, Gln or Gly totally abolished the PD inhibitory activity. Covalent modification of the catalytic cysteine with tosyl-l-Lys-chloromethylketone (TLCK) or H-D-Phe-Arg-chloromethylketone did not affect formation of the stable complex.

Conclusion

Latency of arginine-specific progingipains is efficiently exerted by N-terminal prodomains thus protecting the periplasm from potentially damaging effect of prematurely activated gingipains.

General significance

Blocking progingipain activation may offer an attractive strategy to attenuate P. gingivalis pathogenicity.  相似文献   
5.
Bone morphogenetic proteins (BMPs) are morphogens with long-range signaling activities. BMP-7 is secreted as a stable complex consisting of a growth factor noncovalently associated with two propeptides. In other transforming growth factor-β-like growth factor complexes, the prodomain (pd) confers latency to the complex. However, we detected no difference in signaling capabilities between the growth factor and the BMP-7 complex in multiple in vitro bioactivity assays. Biochemical and biophysical methods elucidated the interaction between the BMP-7 complex and the extracellular domains of its type I and type II receptors. Results showed that type II receptors, such as BMP receptor II, activin receptor IIA, and activin receptor IIB, competed with the pd for binding to the growth factor and displaced the pd from the complex. In contrast, type I receptors interacted with the complex without displacing the pd. These studies suggest a new model for growth factor activation in which proteases or other extracellular molecules are not required and provide a molecular mechanism consistent with a role for BMP receptors in the establishment of early morphogen gradients.  相似文献   
6.
Plasmodium subtilisin 2 (Sub2) is a multidomain protein that plays an important role in malaria infection. Here, we describe the solution NMR structure of a conserved region of the inhibitory prodomain of Sub2 from Plasmodium falciparum, termed prosub2. Despite the absence of any detectable sequence homology, the protozoan prosub2 has structural similarity to bacterial and mammalian subtilisin‐like prodomains. Comparison with the three‐dimensional structures of these other prodomains suggests a likely binding interface with the catalytic domain of Sub2 and provides insights into the locations of primary and secondary processing sites in Plasmodium prodomains. Proteins 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   
7.
The P. falciparum serine repeat antigen (PfSERA5) is the most abundantly expressed protein in the parasitophorous vacuole during the asexual blood stage and serves as both drug and vaccine target. The processed central fragment (56 KDa) of PfSERA5 is implicated to play an important role in parasite exit (egress) during schizont rupture from erythrocytes. Structural characterization of its enzymatic domain supports protease-like function for this central domain. The understanding of exact functional role of PfSERA5 in parasite egress remains unconfirmed as recent studies also indicate an indispensable non-catalytic role for PfSERA5 putative enzyme domain in the blood stage. No structural insight into PfSERA5 prodomain is available. Structure prediction of PfSERA5 prodomain using in silico approach in our study, showed it to have structural similarity with calcium-binding proteins. An earlier observation of steep rise in intracellular calcium concentration as an important factor in egress makes the prodomain calcium-binding role significant. The implication of calcium on structure and activity of PfSERA5 putative enzyme domain is also unknown, and such information would aid to substantiating any calcium-dependent effects on PfSERA5. To understand this, we performed molecular dynamic (MD) simulation both in the presence and absence of calcium. MD results show secondary structure conformational differences in local regions of protein structure. Our results support calcium to be an important parameter for stability and function of PfSERA5. This computational assessment suggest a need to design future experiments like calcium-dependent inhibition studies to reveal exact functional role of PfSERA5 in parasite egress.  相似文献   
8.
The 81-residue multifunctional prodomain of human furin adopts only a partially-folded conformational state under near physiological conditions. By use of NMR spectroscopy, we demonstrate that the N-terminal residues 1-46 of the prodomain in 50% trifluoroethanol (TFE) populates backbone conformations containing a short helix, a beta-strand and a helix-loop-helix super-secondary structure with elements of tertiary interactions. (15)N NMR relaxation measurements indicate that the helix-loop-helix region has similar motional characteristics in the fast picosecond to nanosecond timescales. On the other hand, the intervening segment (residues 47-65) is predominantly unstructured with a long and highly flexible region surrounding the protease 'activation loop' followed by a partially helical segment in the C-terminal end. Interestingly, the helix-loop-helix "fold" was found to be populated even when excised out of the full-length prodomain, since a peptide fragment derived from residues Pro16-Arg49 can also form the helix-loop-helix structure in aqueous solution in the absence of TFE. Structure analyses reveal that two helices orient in an antiparallel fashion directed by the sharing of hydrophobic residues involved in helix-capping interactions. Very importantly, a positively-charged Lys residue replacing His43 in the 16-49 fragment imparts stability to the super-secondary structure at both acidic and neutral pH, while a hydrophobic residue Leu at position 43 appears to destabilize the helical conformation in the 31-44 region. As such, this study provides valuable insights into the structural properties of the furin prodomain in relation to its role in the folding of the furin zymogen and its inhibitory action toward furin.  相似文献   
9.
Cellular adhesion by classical cadherins depends critically on the exact proteolytic removal of their N-terminal prosequences. In this combined solution NMR and X-ray crystallographic study, the consequences of propeptide cleavage of an epithelial cadherin construct (domains 1 and 2) were followed at atomic level. At low protein concentration, the N-terminal processing induces docking of the tryptophan-2 side-chain into a binding pocket on the same molecule. At high concentration, cleavage induces dimerization (KD=0.72 mM, k(off)=0.7 s(-1)) and concomitant intermolecular exchange of the betaA-strands and the tryptophan-2 side-chains. Thus, the cleavage represents the switch from a nonadhesive to the functional form of cadherin.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号