首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9493篇
  免费   710篇
  国内免费   1368篇
  2024年   40篇
  2023年   180篇
  2022年   287篇
  2021年   375篇
  2020年   415篇
  2019年   410篇
  2018年   340篇
  2017年   332篇
  2016年   377篇
  2015年   329篇
  2014年   450篇
  2013年   776篇
  2012年   368篇
  2011年   445篇
  2010年   321篇
  2009年   555篇
  2008年   574篇
  2007年   496篇
  2006年   439篇
  2005年   451篇
  2004年   314篇
  2003年   302篇
  2002年   290篇
  2001年   228篇
  2000年   184篇
  1999年   193篇
  1998年   172篇
  1997年   174篇
  1996年   164篇
  1995年   158篇
  1994年   165篇
  1993年   151篇
  1992年   131篇
  1991年   114篇
  1990年   137篇
  1989年   98篇
  1988年   70篇
  1987年   54篇
  1986年   80篇
  1985年   90篇
  1984年   90篇
  1983年   37篇
  1982年   40篇
  1981年   30篇
  1980年   26篇
  1979年   31篇
  1978年   21篇
  1977年   38篇
  1976年   14篇
  1975年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The photosynthetic reaction center complex from the green sulfur bacteriumChlorobium vibrioforme has been isolated under anaerobic conditions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals polypeptides with apparent molecular masses of 80, 40, 30, 18, 15, and 9 kDa. The 80- and 18-kDa polypeptides are identified as the reaction center polypeptide and the secondary donor cytochromec 551 encoded by thepscA andpscC genes, respectively. N-terminal amino acid sequences identify the 40-kDa polypeptide as the bacteriochlorophylla-protein of the baseplate (the Fenna-Matthews-Olson protein) and the 30-kDa polypeptide as the putative 2[4Fe-4S] protein encoded bypscB. Electron paramagnetic resonance (EPR) analysis shows the presence of an iron-sulfur cluster which is irreversibly photoreduced at 9K. Photoaccumulation at higher temperature shows the presence of an additional photoreduced cluster. The EPR spectra of the two iron-sulfur clusters resemble those of FA and FB of Photosystem I, but also show significantly differentg-values, lineshapes, and temperature and power dependencies. We suggest that the two centers are designated Center I (with calculatedg-values of 2.085, 1.898, 1.841), and Center II (with calculatedg-values of 2.083, 1.941, 1.878). The data suggest that Centers I and II are bound to thepscB polypeptide.  相似文献   
2.
  1. Realized trophic niches of predators are often characterized along a one‐dimensional range in predator–prey body mass ratios. This prey range is constrained by an “energy limit” and a “subdue limit” toward small and large prey, respectively. Besides these body mass ratios, maximum speed is an additional key component in most predator–prey interactions.
  2. Here, we extend the concept of a one‐dimensional prey range to a two‐dimensional prey space by incorporating a hump‐shaped speed‐body mass relation. This new “speed limit” additionally constrains trophic niches of predators toward fast prey.
  3. To test this concept of two‐dimensional prey spaces for different hunting strategies (pursuit, group, and ambush predation), we synthesized data on 63 terrestrial mammalian predator–prey interactions, their body masses, and maximum speeds.
  4. We found that pursuit predators hunt smaller and slower prey, whereas group hunters focus on larger but mostly slower prey and ambushers are more flexible. Group hunters and ambushers have evolved different strategies to occupy a similar trophic niche that avoids competition with pursuit predators. Moreover, our concept suggests energetic optima of these hunting strategies along a body mass axis and thereby provides mechanistic explanations for why there are no small group hunters (referred to as “micro‐lions”) or mega‐carnivores (referred to as “mega‐cheetahs”).
  5. Our results demonstrate that advancing the concept of prey ranges to prey spaces by adding the new dimension of speed will foster a new and mechanistic understanding of predator trophic niches and improve our predictions of predator–prey interactions, food web structure, and ecosystem functions.
  相似文献   
3.
Generalist predators have the capacity to restrict pest population growth, especially early in the season before densities increase. However, their polyphagous feeding habits sometimes translate into reduced pest consumption when they target alternative prey. An order-specific monoclonal antibody was developed to examine the strength of trophic connections between Diptera, a major category of non-pest prey, and linyphiid spiders in alfalfa. We report the development and characterization of a monoclonal antibody with order-level specificity to Diptera. This antibody elicited strong absorbance to 22 Diptera from 13 families, no false-positive reactivity to non-dipteran invertebrates, and antigen detection periods following prey consumption that were comparable between spiders. Over 900 field-collected females of the linyphiid spiders Erigone autumnalis and Bathyphantes pallidus were screened for Diptera antigen. Significantly more B. pallidus screened positive for Diptera (40%) compared to E. autumnalis (16%), indicating differential reliance on these prey. In parallel with the collection of spiders for gut-content analysis, prey availability was estimated at web sites. The two spiders exhibited different feeding responses to prey availability. Consumption of Diptera by B. pallidus was strongly correlated with Diptera abundance whilst the availability of other potential prey did not influence predation rates. Conversely, E. autumnalis did not prey upon Diptera in proportion to availability, but increased Collembola activity-density reduced dipteran consumption. Integration of molecular gut-content analysis with precise sampling of prey demonstrated how two closely related linyphiid spiders exhibit different feeding responses to the availability of prey under natural field conditions. Elucidating the feeding preferences of natural enemies is critical to effective incorporation of biological control by generalist predators in the management of agricultural pests.  相似文献   
4.
A bioactive peptide of 8595 Da was purified from the cell free supernatant of Lactococcus garvieae subsp. bovis BSN307T. MALDI MS/MS peptide mapping and the data base search displayed no significant similarity to any reported antimicrobial peptide of LAB. This peptide at a dose concentration of 200 µg ml−1 inhibited the growth of both Gram-positive and Gram-negative bacteria by 58–89% and a dose of 500 µg ml−1 scavenged 50% of DPPH-free radicals generated. Interestingly, cytotoxicity assay demonstrated that 17 µg ml−1 of peptide selectively inhibited 50% proliferation of mammalian cancer cell lines HeLa and MCF-7 whereas normal H9c2 cells remained unaffected. Fluorescent microscopic analysis after DAPI nuclear staining of HeLa cells showed characteristics of apoptosis and activation of caspase-3 was ascertained by caspase-3 fluorescence assay.  相似文献   
5.
6.
Abstract

Microorganisms capable of aerobic respiration on ferrous ions are spread throughout eubacterial and archaebacterial phyla. Phylogenetically distinct organisms were shown to express spectrally distinct redox‐active biomolecules during autotrophic growth on soluble iron. A new iron‐oxidizing eubacterium, designated as strain Funis, was investigated. Strain Funis was judged to be different from other known iron‐oxidizing bacteria on the bases of comparative lipid analyses, 16S rRNA sequence analyses, and cytochrome composition studies. When grown autotrophically on ferrous ions, Funis produced conspicuous levels of a novel acid‐stable, acid‐soluble yellow cytochrome with a distinctive absorbance peak at 579 nm in the reduced state.

Stopped‐flow spectrophotometric kinetic studies were conducted on respiratory chain components isolated from cell‐free extracts of Thiobacillus ferrooxidans. Experimental results were consistent with a model where the primary oxidant of ferrous ions is a highly aggregated c‐type cytochrome that then reduces the periplasmic rusticyanin. The Fe(II)‐dependent, cytochrome c‐catalyzed reduction of the rusticyanin possessed three kinetic properties in common with corresponding intact cells that respire on iron: the same anion specificity, a similar dependence of the rate on the concentration of ferrous ions, and similar rates at saturating concentrations of ferrous ions  相似文献   
7.
1. We performed three, 1‐week in situ experiments in March‐April (expt 1), May (expt 2) and August (expt 3) 2003 in order to assess protozoan and virus‐induced mortality of heterotrophic bacteria in a French lake. Viral and bacterial abundances were obtained using flow cytometry (FCM) while protozoa were counted using epifluorescence microscopy (EFM). 2. A dilution approach, applied to pretreated grazer‐free samples, allowed us to estimate that viral lysis could be responsible for 60% (expt 1), 35% (expt 2) and 52% (expt 3) of daily heterotrophic bacterial mortality. Flagellate (both mixotrophic and heterotrophic) grazing in untreated samples, was responsible for 56% (expt 1), 63% (expt 2) and 18% (expt 3) of daily heterotrophic bacteria removal. 3. These results therefore suggest that both viral lysis and flagellate grazing had a strong impact on bacterial mortality, and this impact varied seasonally. 4. From parallel transmission electron microscopy (TEM) analysis, we found that the burst size (i.e. the number of viruses potentially released per lysed cell) ranged from nine to 25 (expt 1), 10 to 35 (expt 2) and eight to 25 (expt 3). The percentage of infected heterotrophic bacteria was 5.7% (expt 1), 3.4% (expt 2) and 5.7% (expt 3) so that the calculated percentage of bacterial mortality induced by viruses was 6.3% (expt 1), 3.7% (expt 2) and 6.3% (expt 3). 5. It is clear that the dilution‐FCM and TEM methods yielded different estimates of viral impact, although both methods revealed an increased impact of viruses during summer.  相似文献   
8.
9.
Previous studies revealed the thermodynamic properties of DNA adsorption on pure minerals or biomasses; however, there has been little attempt to develop such studies on bacteria–mineral composites. Equilibrium adsorption experiments, attenuated total reflectance Fourier transform infrared spectroscopy, and isothermal titration calorimetry were employed to investigate the adsorption of DNA by Bacillus subtilis, Pseudomonas putida, and their composites with minerals. Similar capacity and affinity were observed for DNA adsorption on two bacterial cells. However, different patterns were found in the adsorption of DNA by bacteria–mineral composites. The Gram-positive bacterium B. subtilis enhanced the adsorption of DNA on its mineral composites compared with their individual components, while the composites of Gram-negative bacterial cells with kaolinite and goethite bound lower amounts of DNA than the predicted values. The thermodynamic parameters and the Fourier transform infrared spectra showed that van der Waals force and hydrogen bonding are responsible for the DNA adsorption on B. subtilis–minerals and P. putida–kaolinite. By contrast, the entropy increases of excluded water rearrangement and dehydration effect play key roles in the interaction between DNA and P. putida–montmorillonite/goethite composites.  相似文献   
10.
Sulfur bacteria such as Beggiatoa or Thiomargarita have a particularly high capacity for storage because of their large size. In addition to sulfur and nitrate, these bacteria also store phosphorus in the form of polyphosphate. Thiomargarita namibiensis has been shown to release phosphate from internally stored polyphosphate in pulses creating steep peaks of phosphate in the sediment and thereby inducing the precipitation of phosphorus-rich minerals. Large sulfur bacteria populate sediments at the sites of recent phosphorite formation and are found as fossils in ancient phosphorite deposits. Therefore, it can be assumed that this physiology contributes to the removal of bioavailable phosphorus from the marine system and thus is important for the global phosphorus cycle. We investigated under defined laboratory conditions which parameters stimulate the decomposition of polyphosphate and the release of phosphate in a marine Beggiatoa strain. Initially, we tested phosphate release in response to anoxia and high concentrations of acetate, because acetate is described as the relevant stimulus for phosphate release in activated sludge. To our surprise, the Beggiatoa strain did not release phosphate in response to this treatment. Instead, we could clearly show that increasing sulfide concentrations and anoxia resulted in a decomposition of polyphosphate. This physiological reaction is a yet unknown mode of bacterial polyphosphate usage and provides a new explanation for high phosphate concentrations in sulfidic marine sediments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号