首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  2014年   2篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2000年   2篇
  1995年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Using an insoluble inorganic salt precipitation technique, the permeability of cell walls and especially of endodermal Casparian bands (CBs) for ions was tested in young roots of corn (Zea mays) and rice (Oryza sativa). The test was based on suction of either 100 µm CuSO4 or 200 µm K4[Fe(CN)6] into the root from its medium using a pump (excised roots) or transpirational stream (intact seedlings), and subsequent perfusion of xylem of those root segments with the opposite salt component, which resulted in precipitation of insoluble brown crystals of copper ferrocyanide. Under suction, Cu2+ could cross the endodermis apoplastically in both plant species (although at low rates) developing brown salt precipitates in cell walls of early metaxylem and in the region between CBs and functioning metaxylem vessels. Hence, at least Cu2+ did cross the endodermis dragged along with the water. The results suggested that CBs were not perfect barriers to apoplastic ion fluxes. In contrast, ferrocyanide ions failed to cross the mature endodermis of both corn and rice at detectable amounts. The concentration limit of apoplastic copper was 0.8 µm at a perfusion with 200 µm K4[Fe(CN)6]. Asymmetric development of precipitates suggested that the cation, Cu2+, moved faster than the anion, [Fe(CN)6]4–, through cell walls including CBs. Using Chara cell wall preparations (‘ghosts’) as a model system, it was observed that, different from Cu2+, ferrocyanide ions remained inside wall-tubes suggesting a substantially lower permeability of the latter which agreed with the finding of an asymmetric development of precipitates. In both corn and rice roots, there was a significant apoplastic flux of ions in regions where laterals penetrated the endodermis. Overall, the results show that the permeability of CBs to ions is not zero. CBs do not represent a perfect barrier for ions, as is usually thought. The permeability of CBs may vary depending on growth conditions which are known to affect the intensity of formation of bands.  相似文献   
2.
Precipitates of insoluble inorganic salts were used to clog apoplastic pores in cell walls of the outer part of rice roots (OPR) in two rice cultivars (lowland cv. IR64 and upland cv. Azucena). Aerenchyma of two different root zones (20–50 and 50–100 mm from the apex) was perfused with 1 m m potassium ferrocyanide (K4[Fe(CN)6]) while the whole root segments were bathed in 0.5 m m copper sulphate (CuSO4) medium. In another experiment, salts were applied on opposite sides of the OPR. The copper-ferrocyanide precipitation technique resembles the famous osmotic experiments of the German botanist Wilhelm Pfeffer, in which he used them with clay diaphragms. Precipitates were observed on the side where ferrocyanide was applied, suggesting that Cu2+ and SO42– were passing the barrier including the Casparian bands of the exodermis much faster than ferrocyanide. There was a patchiness in the formation of precipitates, correlated with the maturation of the exodermis. The intensity of copper ferrocyanide staining decreased along developing rice roots. No precipitates were observed in mature parts beyond 70–80 mm from the root apex, except for sites around the emergence of secondary roots, which were fairly leaky to both water and ions. Blockage of the apoplastic pores with precipitates caused a three- to four-fold reduction of hydraulic conductivity of the OPR (LpOPR). The reflection coefficient of the OPR (σsOPR) increased in response to the blockage with precipitates. The osmotic versus diffusive water permeability ratios of the OPR (PfOPR/PdOPR) were around 600 for immature and 1200 for mature root segments. Treatment significantly affected the bulk rather than the diffusive water flow and caused a three- to five-fold reduction of the PfOPR/PdOPR ratios. Results indicated that despite the existence of an exodermis with Casparian bands, most of the water moved around cells rather than using the cell-to-cell passage.  相似文献   
3.
运用焦锑酸钾沉淀法,研究了不同光照条件下光敏胞质不育小麦(Triticum aestivum L.)花药发育过程中Ca^2+的分布。短日照条件下,小孢子形成和花粉发育过程中胞内Ca^2+在数量、分布上有变化;小孢子表面逐渐积累Ca^2+,至成熟花粉表面覆盖一层Ca^2+,胞质Ca^2+较少;药隔和药壁组织通过抽外体或共质体途径运输Ca^2+供给花粉的发育;长日照条件下,花粉败育发生在不同时期,早期  相似文献   
4.
Extended protein release from readily prepared, water-insoluble complexes with oppositely charged polyions is explored. Using hen egg-white lysozyme as a model, its sustained release from such complexes with a number of polyanions under physiological conditions has been demonstrated and rationalized. The rate of release varies orders of magnitude and is controlled by the nature of the polyanion (decreasing upon increase in its linear charge density, length, and hydrophobicity) and the complex particle size (the larger the particles, the slower the release).  相似文献   
5.
Potassium antimontate was used to locate Ca2+ in fertile and sterile anthers of photoperiod-sensitive cytoplasmic male-sterile wheat (Triticum aestivum L.).The quantity and distribution of calcium precipitates change in microspore and pollen during microsporogenesis and pollen development.The calcium precipitates gradually accumulated on the surface of tetraspore or pollen until pollen mature. They were abundant on the surface of the trinucleate pollen,but not in the cytoplasm.Calcium was transported in anther wall and intervening connective tissue via symplast and apoplast system,meeting the need of microspore and pollen development.Abortive pollens were observed in the anthers developed under long daylight exposure. Abundant calcium precipitates were distributed along the edge of the degradatived pollen plasma and in the locular matrix,but little in the anther wall and intervening connective tissue of the early abortive pollen.Calcium precipitates accumulated on the surface of pollen was less than fertile pollen,but abundant calcium appear in the epiderms,endotheciums,middle layers of anther wall and cells of connective tissue.The results indicate that abnormalities in the distribution of calcium correlate with the failure of pollen development in photoperiod-sensitive cytoplasmic male-sterile wheat.  相似文献   
6.
Summary The combination of low Mn levels and high Fe levels in tissues of lowland rice varieties, as often encountered when rice is grown on acid soils, is not likely to result from an antagonistic effect of Fe on the uptake of Mn.Experiments with rice plants growing on sand, supplied with Fe and Mn, and subjected to various pH levels and moisture regimes, made it clear that under acid anaerobic conditions the absorption of Mn by rice plants is little affected by the presence of large quantities of Fe, and that under acid aerobic conditions the absorption of Fe by rice plants is little affected by the presence of large quantities of Mn.  相似文献   
7.
Schreiber L  Elshatshat S  Koch K  Lin J  Santrucek J 《Planta》2006,223(2):283-290
Counter diffusion of chloride, applied as NaCl at the inner side of isolated cuticles, and silver, applied as AgNO3 at the outer side, lead to the formation of insoluble AgCl precipitates in isolated cuticles. AgCl precipitates could be visualized by light and scanning electron microscopy. The presence of AgCl precipitates in isolated cuticles was verified by energy dispersive X-ray analysis. It is argued that insoluble AgCl precipitates formed in polar pores of cuticles and as a consequence, cuticular transpiration of 13 out of 15 investigated species was significantly reduced up to three-fold. Water as a small and uncharged but polar molecule penetrates cuticles via two parallel paths: a lipophilic path, formed by lipophilic cutin and wax domains, and a aqueous pathe, formed by polar pores. Thus, permeances P (m s−1) of water, which is composed of the two quantities P Lipid and P Pore, decreased, since water transport across polar pores was affected by AgCl precipitates. Cuticles with initially high rates of cuticular transpiration were generally more sensitive towards AgCl precipitates compared to cuticles with initially low rates of transpiration. Results presented here, significantly improves the current model of the structure of the cuticular transpiration barrier, since the pronounced heterogeneity of the cuticular transport barrier, composed of lipophilic as well as polar paths of diffusion, has to be taken into account in future.  相似文献   
8.
Expanded bed adsorption (EBA) chromatography was investigated for clarification and capture of high‐concentration refold pools of Escherichia coli‐based therapeutics. Refolding of denatured inclusion bodies (IBs) at high protein concentration significantly improved product throughput; however, direct filtration of the refold materials became very challenging because of high content of protein precipitates formed during refolding. In addition, irreversible protein precipitation caused by high local concentration was encountered in packed bed capture during cation exchange chromatography elution, which limited column loading capacity and capture step productivity. In this study, the two issues are addressed in one unit operation by using EBA. Specifically, EBA can handle feed streams with significant amount of particles and precipitates, which eliminated the need for refold pool clarification through filtration. The relatively broad EBA elution profile is particularly suitable for proteins of low solubility and can effectively avoid product loss previously associated with on‐column precipitation during capture. As the EBA resin (RHOBUST® FastLine SP IEX) used here has unique properties, it can be operated at high linear velocity (800–1,600 cm/h), while achieving a selectivity and impurity clearance largely comparable to the packed bed resin of the same ligand chemistry (SP Sepharose FF). Furthermore, the filtration of the EBA elution pool is easily manageable within facility capability. Overall, this study demonstrates that the EBA process helps debottleneck the purification of high‐turbidity refold pools by removing precipitates and concurrently capturing the product, which can be applied to other E. coli‐based therapeutics that also requires refolding of IBs. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:113–123, 2014  相似文献   
9.
Fe-Si-rich hydrothermal precipitates are distributed widely in low-temperature diffusing hydrothermal fields. Due to the significant contribution of Fe-oxidizing bacteria (FeOB) to the formation of this type of hydrothermal precipitates, previous studies focus mostly on investigating FeOB-related microbial populations, albeit these precipitates actually accommodate abundant other microbial communities, particularly those involved in marine nitrogen cycle. In this study, we investigated the composition, diversity, and abundance of aerobic and anaerobic ammonia-oxidizing microorganisms dwelling in low-temperature Fe-Si-rich hydrothermal precipitates of the Lau Integrated Study Site based on ammonia monooxygenase (amoA) gene and 16S rRNA gene. Phylogenetic analysis revealed the common presence of ammonia-oxidizing archaea (AOA), Nitrosospira-like ammonia-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing anammox (bacteria) in the Fe-Si-rich hydrothermal precipitates. Quantitative PCR analysis showed that AOA dominated the whole microbial community and the abundance of archaeal amoA gene was 2–3 orders of magnitude higher than that of AOB and anammox bacteria. Result of glycerol dialkyl glycerol tetraether analysis confirmed the presence and abundance of AOA. Our results suggest that microbial ammonia oxidations, especially archaeal aerobic ammonia oxidation, are prevalent and pivotal processes in low-temperature diffusing hydrothermal fields.

Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file.  相似文献   

10.
不同培养基中氧化亚铁硫杆菌生长及沉淀研究   总被引:8,自引:0,他引:8  
为减缓氧化亚铁硫杆菌在9K培养基中培养时产生的沉淀,通过改变9K液体培养基的组成成分,研究了培养基成分的改变对细菌生长特性的影响及沉淀产生情况,并利用X射线衍射仪对沉淀进行了物相鉴定。结果表明,最佳培养基组成为(NH4)2HPO43.00g,KCl 0.10g,MgSO4.7H2O 0.50g,FeSO4.7H2O 44.3g,蒸馏水1 000ml,pH 2.0。在该培养基中,氧化亚铁硫杆菌不仅能保持其较高的氧化活性(其Fe2 氧化速率最高为0.3376 g/L.h-1),而且生长过程中沉淀出现的时间最迟,产生的沉淀量最少,且沉淀为非晶型物质。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号