首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1331篇
  免费   183篇
  国内免费   505篇
  2024年   10篇
  2023年   35篇
  2022年   53篇
  2021年   59篇
  2020年   89篇
  2019年   93篇
  2018年   66篇
  2017年   94篇
  2016年   75篇
  2015年   66篇
  2014年   84篇
  2013年   96篇
  2012年   80篇
  2011年   82篇
  2010年   75篇
  2009年   86篇
  2008年   98篇
  2007年   91篇
  2006年   98篇
  2005年   60篇
  2004年   55篇
  2003年   61篇
  2002年   44篇
  2001年   53篇
  2000年   46篇
  1999年   39篇
  1998年   28篇
  1997年   24篇
  1996年   27篇
  1995年   23篇
  1994年   18篇
  1993年   16篇
  1992年   18篇
  1991年   9篇
  1990年   17篇
  1989年   7篇
  1988年   10篇
  1987年   3篇
  1986年   6篇
  1985年   2篇
  1984年   5篇
  1983年   2篇
  1982年   6篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1958年   2篇
  1950年   1篇
排序方式: 共有2019条查询结果,搜索用时 15 毫秒
1.
Breeding records of 11 taxa of captive lemurs housed at the Duke University Primate Center (DUPC), North Carolina, were analyzed for differences in the timing of births, for the relationship between breeding season and photoperiod, and for differences in litter size. At DUPC there are significant differences in the timing of births among certain taxa, including differences among some subspecies of Lemur fulvus.However, changes in latitude result in changes in the timing of the breeding season. Lemurs moved to higher latitudes mate at lower light-dark ratios than on Madagascar. The data presented here are consistent with the following model: a photoperiodic cue initiating reproductive activity, presumably a light-dark threshold, precedes the actual mating season by approximately 2 months, with an intervening period of physiological and social preparation. On Madagascar, selection may have favored births that coincide with the end of dry seasons and the beginning of wet seasons, which results in lactation and weaning during times of resource abundance. Taxa from the north and east have the highest mean litter sizes; those from the west have the lowest.  相似文献   
2.
《植物生态学报》2016,40(8):748
Aims Grazing intensity and grazing exclusion affect ecosystem carbon cycling by changing the plant community and soil micro-environment in grassland ecosystems. The aims of this study were: 1) to determine the effects of grazing intensity and grazing exclusion on litter decomposition in the temperate grasslands of Nei Mongol; 2) to compare the difference between above-ground and below-ground litter decomposition; 3) to identify the effects of precipitation on litter production and decomposition. Methods We measured litter production, quality, decomposition rates and soil nutrient contents during the growing season in 2011 and 2012 in four plots, i.e. light grazing, heavy grazing, light grazing exclusion and heavy grazing exclusion. Quadrate surveys and litter bags were used to measure litter production and decomposition rates. All data were analyzed with ANOVA and Pearson’s correlation procedures in SPSS. Important findings Litter production and decomposition rates differed greatly among four plots. During the two years of our study, above-ground litter production and decomposition in heavy-grazing plots were faster than those in light-grazing plots. In the dry year, below-ground litter production and decomposition in light-grazing plots were faster than those in heavy-grazing plots, which is opposite to the findings in the wet year. Short-term grazing exclusion could promote litter production, and the exclusion of light-grazing could increase litter decomposition and nutrient cycling. In contrast, heavy-grazing exclusion decreased litter decomposition. Thus, grazing exclusion is beneficial to the restoration of the light-grazing grasslands, and more human management measures are needed during the restoration of heavy-grazing grasslands. Precipitation increased litter production and decomposition, and below-ground litter was more vulnerable to the inter-annual change of precipitation than above-ground litter. Compared to the light-grazing grasslands, heavy-grazing grasslands had higher sensitivity to precipitation. The above-ground litter decomposition was strongly positively correlated with the litter N content (R2 = 0.489, p < 0.01) and strongly negatively correlated with the soil total N content (R2 = 0.450, p < 0.01), but it was not significantly correlated with C:N and lignin:N. Below-ground litter decomposition was negatively correlated with the litter C (R2 = 0.263, p < 0.01), C:N (R2 = 0.349, p < 0.01) and cellulose content (R2 = 0.460, p < 0.01). Our results will provide a theoretical basis for ecosystem restoration and the research of carbon cycling.  相似文献   
3.
More energy-efficient, readily dimmable, long-lasting and more affordable light-emitting diode (LED) lights are increasingly finding applications in poultry production facilities. Despite anecdotal evidence about the benefits of such lighting on bird performance and behavior, concrete research data were lacking. In this study, a commercial poultry-specific LED light (dim-to-blue, controllable correlated color temperature (CCT) from 4500 to 5300 K) and a typical compact fluorescent light (CFL) (soft white, CCT=2700 K) were compared with regards to their effects on growing performance, activity levels, and feather and comb conditions of non-beak-trimmed W-36 pullets during a 14-week rearing period. A total of 1280-day-old pullets in two successive batches, 640 birds each, were used in the study. For each batch, pullets were randomly assigned to four identical litter-floor rooms equipped with perches, two rooms per light regimen, 160 birds per room. Body weight, BW uniformity (BWU), BW gain (BWG) and cumulative mortality rate (CMR) of the pullets were determined every 2 weeks from day-old to 14 weeks of age (WOA). Activity levels of the pullets at 5 to 14 WOA were delineated by movement index. Results revealed that pullets under the LED and CFL lights had comparable BW (1140±5 g v. 1135±5 g, P=0.41), BWU (90.8±1.0% v. 91.9±1.0%, P=0.48) and CMR (1.3±0.6% v. 2.7±0.6%, P=0.18) at 14 WOA despite some varying BWG during the rearing. Circadian activity levels of the pullets were higher under the LED light than under the CFL light, possibly resulting from differences in spectrum and/or perceived light intensity between the two lights. No feather damage or comb wound was apparent in either light regimen at the end of the rearing period. The results contribute to understanding the impact of emerging LED lights on pullets rearing which is a critical component of egg production.  相似文献   
4.
To investigate the role of species‐specific litter decomposability in determining plant community structure, we constructed a theoretical model of the codevelopmental dynamics of soil and vegetation. This model incorporates feedback between vegetation and soil. Vegetation changes the nutrient conditions of soil by affecting mineralization processes; soil, in turn, has an impact on plant community structure. The model shows that species‐level traits (decomposability, reproductive and competitive abilities) determine whether litter feedback effects are positive or negative. The feedback determines community‐level properties, such as species composition and community stability against invasion. The model predicts that positive feedback may generate multiple alternative steady states of the plant community, which differ in species richness or community composition. In such cases, the realized state is determined by initial abundance of co‐occurring species. Further, the model shows that the importance of species‐level traits depends on environmental conditions such as system fertility.  相似文献   
5.
Foliar litterfall nutrient concentrations were analysed for selected members of Taxodiaceae and Cupressaceae families andPseudotsuga menziesii for two arboreta in western Oregon and Washington. Nutrient results between arboreta show similar concentrations with the exception of magnesium, which may be the result of historical land use. Nutrient concentrations between species vary considerably.Pseudotsuga menziesii is particularly distinctive from the Cupressaceae and Taxodiaceae by retaining large amounts of phosphorus and potassium. Taxodiaceae is distinctive by high concentration of Mg while Cupressaceae retains calcium, especiallyChamaecyparis nootkatensis. Results suggest that all members of Taxodiaceae and Cupressaceae retain considerably more Ca than Pinaceae in foliar litter.  相似文献   
6.
Calcium, magnesium and potassium dynamics in decomposing litter of three tree species were measured over a two-year period. The speices studied were flowering dogwood (Cornus florida), red maple (Acer rubrum) and chestnut oak (Quercus prinus). The order of decomposition was:C. florida>A. rubrum>Q. prinus.Calcium concentrations increased following any initial leaching losses. However, there were net releases of Ca from all three litter types since mass loss exceeded the increases in concentration. Net release of Ca by the end of two years from all three species combined was 42% of initial inputs in litterfall. Magnesium concentrations increased in the second year, following decreases due to leaching during the first year inC. florida andA. rubrum litter. Net release of Mg by the end of two years was 58% of initial inputs. Potassium concentrations decreased rapidly and continued to decline throughout the study. Net release of K by the end of two years was 91% of initial inputs.These data on cation dynamics, and similar data on N, S and P dynamics from a previous study, were combined with annual litterfall data to estimate the release of selected nutrients from foliar litter of these tree species at the end of one and two years of decomposition. The relative mobility of all six elements examined in relation to mass loss after two years was; K>Mg>mass>Ca>S>P>N.  相似文献   
7.
Summary Analysis of 6 years' data on a population of free-living white-footed mice documents both phenotypic and environmental control of litter size. Litter size was positively correlated with maternal body size. Maternal size depended upon both seasonal and annual variation. Paradoxically, the proportion of small versus large litters varied among habitats independently of the effects of body size. The result is an influence of habitat on life history that yields patterns of reproduction and survival opposite to the predictions of demographic theory. The habitat producing the largest litters had a relatively high ratio of adult/juvenile survival. Litter size was small in the habitat where the adult/juvenile survival ratio was smallest. All of these anomalous patterns can be explained through density-dependent habitat selection by female white-footed mice. Life-history studies that ignore habitat and habitat selection may find spurious correlations among traits that result in serious misinterpretations about life history and its evolution.  相似文献   
8.
The influence of invertebrates upon the decomposition ofPotamogeton pectinatus L. in a coastal Marina system was examined over 112 days using litter bags. Invertebrate inclusion bags (2 mm mesh, 5 mm holes) registered a dry mass loss of 1% d–1, while exclusion litter bags (80 µm mesh) produced a 0.4% mass loss d–1 (a 2.5 fold difference). Losses of ash and N from inclusion bags were greater than those from exclusion bags (p < 0.05). There was a three fold difference between the two treatments in the time taken for litter to breakdown to half the initial stock: T1/2 for inclusion bags = 43 d, exclusion bags = 130 d. In both treatments, minerals showed an expected rapid loss, due to leaching, with a subsequent slow increase relative to the dry material remaining. A total of nine invertebrate taxa was recorded from inclusion bags, with a peak biomass of 64 mg g–1 dry massPotamogeton bag–1 reached at 64 days after immersion. Grazing amphipods,Melita zeylanica Stebbing andAustrochiltonia subtenuis (Barnard), numerically dominated the litter bag fauna, whileM. zeylanica and nymphs of the zygopteran predatorIschnura senegalensis (Rambur) formed most of the biomass. Scanning Electron Microscopy indicated heavy grazing of micro-organisms by invertebrates, with major qualitative differences occurring 112 days after immersion. Invertebrates significantly accelerated the rate of litter breakdown through their feeding activities, assisting fragmentation and thus contributing to plant losses and also by increasing the surface area for microbial colonisation and attack.  相似文献   
9.
Summary A pot experiment withAlnus incana (L.) Moench growing in sand was set up to compare the amounts of nitrogen released from plants shoot litter with that released below ground as root litter and/or root exudation. No nitrogen fixation by free-living microorganisms was found in the sand and the increased nitrogen content of the plant + soil system was therefore due to nitrogen fixation byFrankia in the alder root-nodules. Most of the nitrogen released from the plants was in the nitrogen-rich leaf and other shoot litter. Only small amounts of nitrogen were found in the drainage water from the pots and were recorded as increased nitrogen content of the sand.  相似文献   
10.
The formation of mor humus in an experimental grassland plot, which has been acidified by long-term fertiliser treatment, has been studied by comparing the rates of cellulose, soil organic matter and plant litter decay with those in an adjacent plot with near-neutral pH and mull humus. The decomposition of cellulose filter paper in litter bags of 5 mm, 1-mm and 45-μm mesh size buried at 3 to 4 cm depth the plots was followed by measuring the weight loss and changes in glucose content over a 6 month period. Soil pH was either 5.3 or 4.3. Decomposition of native soil organic matter and plant litter in soil from the same plots were followed using CO2 evolution in laboratory microcosms. Cellulose weight loss at pH 5.3 was greatest from the 5-mm mesh bags and least from the 45-um mesh bags. At pH 4.3 there was little weight loss from bags and no significant differences in weight loss between bags with different sized mesh. There was, however, a reduction in the glucose content of the hydrolysed and derivatised filter paper with time. The decomposition rate of native soil organic matter in the low pH soil was increased to that observed in the less acid soil when the pH of the former was increased from 4.3 to 5.3. The increase in decomposition rate of added plant litter in the more acid soil as a result of CA(OH)2 addition was only 60% of that observed in the soil with pH 5.3. These data support the hypothesis that the absence of soil animals and the restricted microbial decomposition in the acidic soil was responsible for mor humus formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号